Mike O'Sullivan
Department of Mathematics
San Diego State University
Spring 2016

Math 627B: Modern Algebra I HW 5

Due: Tuesday 4/19, 2016.

1 Problems

Problem 1: Sixth roots of unity.
(a) Factor $x^{6}-1$ completely over \mathbb{Q}.
(b) Show that the splitting field of $x^{6}-1$ is of degree 2 over \mathbb{Q}.

Problem 2: Minimal polynomials for elements of $\mathbb{Q}(\sqrt[3]{2})$ (see $[\mathrm{A}] 3.1 \# 4,5)$.
(a) Find the minimum polynomial of $\sqrt[3]{2}+1$ over \mathbb{Q}. [There is a clever way that involves little computation, but don't feel obliged to use it!]
(b) Find the minimum polynomial of $\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.

Problem 3: Show that $\mathbb{Q}(i \sqrt{5}) / \mathbb{Q}$ and $\mathbb{Q}((1+i) \sqrt[4]{5}) / \mathbb{Q}(i \sqrt{5})$ are normal, but $\mathbb{Q}((1+i) \sqrt[4]{5}) / \mathbb{Q}$ is not normal.

Problem 4: Prove: If H is an intermediate field of the finite Galois extension G / F then H / F is normal if and only if $\sigma(H) \subseteq H$ for all $\sigma \in \operatorname{Aut}(G / F)$.

Problem 5: Let $E=\mathbb{Q}(i, \sqrt{2})$.
(a) Find the minimum polynomial of $i+\sqrt{2}$.
(b) Show this polynomial splits in E.
(c) Show that E is a simple extension of \mathbb{Q}.

