Mike O'Sullivan
Department of Mathematics
San Diego State University
Spring 2016

Math 627B: Modern Algebra I HW 5

Due: Thursday 4/28, 2016.
Problems 1: Let ζ_{n} be the primitive nth root of unity $e^{2 \pi i / n}$ and let $\psi_{n}(x)$ be its minimal polynomial.
(a) Show that $\psi_{2 n}(x)=\psi_{n}(-x)$ for an odd integer n.
(b) Show that $\mathbb{Q}\left(\zeta_{2 n}\right)=\mathbb{Q}\left(\zeta_{n}\right)$.
(c) Show that $\psi_{p^{r}}(x)=\psi_{p}\left(x^{p^{r-1}}\right)$

Problem 2: Map out the Galois correspondence for $\mathbb{Q}\left(\zeta_{n}\right)$ for $n=7,9,11$, as we did in class for $n=3,4,5,8$. (Why did I skip $n=6,10$?)

Problems 3: Let p, q be distinct primes. Find the Galois group and map out the relationship between subfields and subgroups for
(a) $\mathbb{Q}(\sqrt{p}, \sqrt{q}) / \mathbb{Q}$.

Problem 4: Infinite algebraic extensions.
(a) Find a sequence of fields $\mathbb{Q} \leq F_{1} \leq F_{2} \leq \cdots$ such that each F_{i} is a normal extension of \mathbb{Q}. Justify your answer. [See [A] 6.3\#5 for inspiration.]
(b) Find a sequence of fields $\mathbb{Q} \leq F_{1} \leq F_{2} \leq \cdots$ such that each F_{i+1} is a normal extension of F_{i} but not of F_{i-1}. [See [A] 6.3\#9 for inspiration.]

