Mike O'Sullivan Department of Mathematics San Diego State University

Spring 2016

Math 627B: Modern Algebra I HW 5

Due: Thursday 4/28, 2016.

Problems 1: Let ζ_n be the primitive *n* th root of unity $e^{2\pi i/n}$ and let $\psi_n(x)$ be its minimal polynomial.

- (a) Show that $\psi_{2n}(x) = \psi_n(-x)$ for an odd integer n.
- (b) Show that $\mathbb{Q}(\zeta_{2n}) = \mathbb{Q}(\zeta_n)$.
- (c) Show that $\psi_{p^r}(x) = \psi_p(x^{p^{r-1}})$

Problem 2: Map out the Galois correspondence for $\mathbb{Q}(\zeta_n)$ for n = 7, 9, 11, as we did in class for n = 3, 4, 5, 8. (Why did I skip n = 6, 10?)

Problems 3: Let p, q be distinct primes. Find the Galois group and map out the relationship between subfields and subgroups for

(a)
$$\mathbb{Q}(\sqrt{p},\sqrt{q})/\mathbb{Q}$$
.

Problem 4: Infinite algebraic extensions.

- (a) Find a sequence of fields $\mathbb{Q} \leq F_1 \leq F_2 \leq \cdots$ such that each F_i is a normal extension of \mathbb{Q} . Justify your answer. [See [A] 6.3#5 for inspiration.]
- (b) Find a sequence of fields $\mathbb{Q} \leq F_1 \leq F_2 \leq \cdots$ such that each F_{i+1} is a normal extension of F_i but not of F_{i-1} . [See [A] 6.3#9 for inspiration.]