
Definition 7.8. Let N , H be two groups and let ϕ : H −→ Aut(N) be a ho-
momorphism. Write ϕ(h) as ϕh. Define a new group with elements N × H and
multiplication defined by

(n1, h1) ∗ (n2, h2) = (n1ϕh1(n2), h1, h2)

This is the (external) semi-direct product of N and H defined by ϕ and is written
N oϕ H.

We usually just write the elements as nh and the product is n1h1n2h2 =
n1ϕh1(n2)h1h2.

Problems 7.9.

(1) Show that each element does indeed have an inverse, and that the associative
law holds. Thus this operation does indeed define a group.

(2) Show that the multiplication is complete determined by the relation hn =
ϕh(n)h.

(3) In Gl(n, F ), for F a field, let T be the upper triangular matrices with nonze-
ros on the diagonal; let U be the upper triangular matrices with 1’s on the
diagonal and let D be the diagonal matrices with nonzero elements on the
diagonal. Show that T = U oD. Describe the map ϕ : D −→ Aut(U).

Example 7.10. Dn
∼= Cn oϕ C2 where ϕ : C2 −→ Aut(Cn) takes the non-identity

element of C2 to the automorphism of Cn taking n to n−1.
Sn = An o 〈(1, 2)〉.
S4 = V o S3 where V is Klein-4 subgroup with elements of the form (a, b)(c, d).
What is the map ϕ?
Gl(n, F ) ∼= Sl(2, F ) o F∗.

Proposition 7.11. Suppose there is a short exact sequence

1 −→ N
ϕ−→ G

θ−→ H −→ 1

and there is a map α : H −→ G such that θ ◦ α is the identity on H. Then G is
the internal direct product N o α(H).

Proof. We have α(H) is a subgroup of G. Suppose g ∈ α(H)∩N . Then g = α(h)
and θ(g) = eH . Consequently h = θ ◦ α(h) = θ(g) = eH . Thus α(H) ∩ N =
α(eH) = eG.

We next show that α(H)N = G. Let g ∈ G and let g′ = α(θ(g)). Then
g′ ∈ α(H). We also have

θ(g−1g′) = θ(g)−1θ(α(θ(g))) = θ(g)−1θ(g) = eH
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Then g−1g′ ∈ N . Setting g−1g′ = n ∈ N , we get g = g′n−1. Thus an arbitrary
element of G is in α(H)N as was to be shown.

Here is another problem, I haven’t checked whether it is a semi-direct product.

Problems 7.12.

(1) Let H = H(F ) be the set of 3 by 3 upper triangular matrices over a field F
with 1s on the diagonal. Show that this is indeed a subgroup of Gl(3, F ).

(2) Show that Z(H) consists of all matrices of the form

1 0 c
0 1 0
0 0 1

. Furthermore

Z(H) ∼= (F,+).

(3) Show that the following 3 types of matrices generate this group.1 a 0
0 1 0
0 0 1

 ,
1 0 c

0 1 0
0 0 1

 ,
1 0 0

0 1 b
0 0 1


(4) Show that H(Fp) is generated by 3 matrices, those in the form above with

a = b = c = 1.

(5) Show that H(F2) ∼= D4.

8 Finitely Generated Abelian Groups

We will write the group operation additively. For A an abelian group, a ∈ A, and
m an integer, mA = a+ · · ·+ a with m summands. The order of a is the smallest
positive integer m such that ma = 0. One can check that ma + na = (m + n)a
and (mn)a = m(na).

Let’s start with abelian groups that we understand well.

Theorem 8.1. Let m1, . . . ,mt be positive integers and A = Z/m1 × · · · × Z/mt.
Let P = {p1, . . . , ps} be the set of all primes dividing m1m2 · · ·mt and let the mj

have factorizations mj =
∏s
i=1 p

eij
i (allowing some eij = 0). Then

A ∼= A1 × · · · ×As

where Ai = Z/pei1i × Z/pei2i × · · ·Z/p
eit
i
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Proof. We know that Z/mj
∼= Z/pe1j1 × · · · × Z/pesjs . Thus

A = Z/m1 × · · · × Z/mt

∼= Z/pe111 × · · · × Z/pes1s
× Z/pe121 × · · · × Z/pes2s

. . .

× Z/pe1t1 × · · · × Z/pests
∼= Z/pe111 × · · · × Z/pe1t1

× Z/pe212 × · · · × Z/pe2t2

. . .

× Z/pes1s × · · · × Z/pests
∼= ×A1 × · · · ×As

Definition 8.2. The multiset
{
p
eij
i : i = 1, . . . , s; and j = 1, . . . t

}
is the set of

elementary divisors of A.

Theorem 8.3. With the notation of the previous theorem, for each i let fi1 ≥
fi2 · · · ≥ fit be a permutation of the exponents ei1, . . . eit putting them in decreasing

order. Let nj =
∏t
i=1 p

fij
i . Then nt | nt−1 | · · · | n1 and A ∼= Z/n1 × · · · × Z/nt.

Proof. The fact that nj | nj−1 follows from fij ≤ fi,j−1. Stepping into the previous
proof, by permuting the lines with the eij we have

A ∼= Z/pf111 × · · · × Z/pf1t1

× Z/pf212 × · · · × Z/pf2t2

. . .

× Z/pfs1s × · · · × Z/pfst1

∼= Z/pf111 × · · · × Z/pfs1s
× Z/pf121 × · · · × Z/pfs2s

. . .

× Z/pf1t1 × · · · × Z/pfsts
∼= Z/n1 × · · · × Z/nt
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Definition 8.4. The nj (that are not 1) in the previous theorem are called the
invariant factors of A.

We want to show that any finite abelian group is the product of cyclic groups,
as in the previous theorem, so it has a set of elementary divisors and invariant
factors.

Definition 8.5. Let A be an abelian group. For m ∈ N let

mA = {ma : a ∈ A}
A[m] = {a : ma = 0}

A(p) =
{
a ∈ A : ord(a) = pk for some k

}
We leave it as an exercise to prove that mA, A[n] and A(p) are all subgroups

of A. Also that A(p) = ∪∞i=0A[pi], and for A finite A(p) = A[pk] for some large
enough k. The fact that A[m] and A(p) are group follows from the basic result
that if a and b commute, then the order of a+ b divides lcm(ord(a), ord(b)).

Problems 8.6.

(1) Find the elementary divisors and the invariant factors for Z/50 × Z/75 ×
Z/136× Z/21000.

(2) How many abelian groups are there of order p6q5r4 where p, q, r are distinct
primes? How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check
your answer against the response to the previous question.

Example 8.7. Q/Z is an interesting example. Every element has finite order, but
Q/Z cannot be written as a direct product of 〈a〉 and another group H for any
nonzero a ∈ Q/Z.

Proposition 8.8. Suppose that A is abelian with |A| = mn and m,n coprime.

(1) mA = A[n]

(2) A is the internal direct product of A[m] and A[n]

Proof. Let u, v ∈ Z be such that um + nv = 1. Let a ∈ A[n]. Then a = (mu +
vn)a = m(ua) + v(na) = m(ua), since we assume na = 0. This shows that
A[n] ⊆ mA. On the other hand, an arbitrary element of mA is ma for a ∈ A.
Since |A| = mn, m(na) = (mn)a = 0, and this shows mA ⊆ A[n].

For the second claim of the theorem, we note that A[m] ∩ A[n] = 0 and a =
(um+nv)a = u(ma)+v(na) = m(ua)+n(va) shows that any a ∈ A can be written
as an element of mA = A[n] plus an element of nA = A[m]. Thus A[m]+A[n] = A.
This shows A is the internal direct product of A[m] and A[n].
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Proposition 8.9. Suppose that A1 × B1
∼= A2 × B2 where everything in Ai has

order dividing m and everything in Bi has order dividing n, and m,n coprime.
Then A1

∼= A2 and B1
∼= B2.

Proof. Assume A1 ×B1
∼= A2 ×B2.

m(Ai ×Bi) = mAi ×mBi
= {(0,mb) : b ∈ Bi}
= {0} ×Bi

The first step because m(a, b) = (ma,mb) and the last step because multiplication
by m (coprime to n) gives an automorphism of Bi. Since m(A1×B1) ∼= m(A2×B2)
we get B1

∼= B2. Similarly we show A1
∼= A2.

Corollary 8.10. Let |A| = pe11 . . . pe2s then

A ∼= A[pe11 ]× · · · ×A[pess ] = A(p1)× · · · ×A(ps)

This factorization is unique up to reordering.

Proof. Apply induction using the previous propositons.

The previous theorem is the first step in the classification of finite abelian
groups. The next step is to classify p-groups. The key lemma follows. Its proof is
quite technical and not very illuminating, so I sketch the proof in [Hungerford Sec
8.2].

Lemma 8.11. Let A be a p-group and let a be an element of maximal order. Then
A = 〈a〉+K for some subgroup K of A.

Proof. Let K be as large as possible such that K ∩ 〈a〉 = {0}. We want to show
that K+〈a〉 = A. Then the internal direct product theorem says that A ∼= K×〈a〉.

Suppose b ∈ A \ (K + 〈a〉). Do some tricks to show:

(1) Show there is a c ∈ A\ (K+ 〈a〉) such that pc ∈ K+ 〈a〉. [ Take the minimal
r such that prb ∈ K + 〈a〉, then let c = pr−1b.

(2) Show there is a d ∈ A \ (K + 〈a〉) such that pd ∈ K. [ Let pc = k + ma,
argue that m = pm′, for some integer m′ using that a has maximal degree
in A and K ∩ 〈a〉 = {0}. Then set d = c−m′a. ]
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By assumption on K, (K + 〈d〉) ∩ 〈a〉 6= {0}, so there is some k ∈ K, and nonzero
r, s ∈ Z such that k + rd = sa.

Now we consider two cases: If p | r then rd ∈ K and consequently sa ∈ K.
This contradicts K ∩ 〈a〉 = {0}. If p 6| r then there are u, v such that up+ rv = 1.
Then d = u(pd) + v(rd). The first term is in K and the second in K + 〈a〉, so
d ∈ K + 〈a〉, which is a contradiction.

Theorem 8.12. Let A be a p-group. Then A is the direct product of cyclic groups
each of which has order a power of p. Consequently, the order of A is also a power
of p.

The decomposition is unique (up to reordering). Put another way, two p-groups
are isomorphic iff their decompositions have the same number of factors for each
power of p.

Proof. The proof is by induction. Using the lemma we can write A = 〈a〉+K. The
subgroup 〈a〉 is cyclic of order pk for some k. Applying the induction hypothesis
to K gives the result. Since A is the direct product of groups of order a power of
p, A itself must have order a power of p.

Clearly, if two groups have the same number of factors for each power of p they
are isomorphic. To prove the converse, suppose

A ∼= (Z/p)k1 × (Z/p2)k2 × · · · × (Z/pr)kr

So some factorization of A has ki terms equal to Z/pi. We can recover the ki
iteratively. Since logp(Z/pn) = n, we have logp(|A|) =

∑r
i=1 iki. Notice that

pn−1Z/pn ∼= Z/p and pkZ/pn is trivial for k ≥ n. Thus the subgroup pr−1A is
isomorphic to

pr−1A ∼= (Z/p)kr

Thus we have logp(|pr−1A|) = kr. Similar computations for piA with i = r−2, r−
3, . . . , 1 allows one to recover the other ki. (Try it as an exercise!)

From the two previous theorems we obtain the fundamental theorem.

Theorem 8.13 (Fundamental Theorem of Finite Abelian Groups). Let A be an
abelian group of order pe11 . . . perr . Then A is a direct product of cyclic groups, each
having order a power of one of the pi. If we write

A(pi) ∼= Z/pai,1i × Z/pai,2i × . . .Z/pai,sii

then for each i,
∑si

`=1 ai,` = ei. The decomposition is unique, up to reordering.

30



Problems 8.14.

(1) Classify all abelian groups of order 84,000.

(2) Let A be an abelian group and let T be the set of elements with finite order.
Show that T is a subgroup of A. Show that A/T has no elements of finite
order.

(3) Give an example of a finitely generated group in which the elements of infinite
order do not form a subgroup. (Compare with the previous problem.)

(4) Let G −→ Z be a surjective homomorphism. Show that G has a subgroup
H and an element a such that G is the internal direct product H × 〈a〉.

(5) Let G be a finite abelian p-group. Use the classification of finite abelian
groups to show that pG < G. Under what conditions is pG = 0?

(6) Show that pG = G is possible for an infinite group.

9 Free groups, generators and relations

Definition 9.1. G is called a cyclic extension of N when G/N ∼= Cr where Cr is
the cyclic group of order r.

Example 9.2. The quaternions are a 2-cyclic extension of Z/4. The dihedral group
Dr is a 2-cyclic extension of Z/r.

Consider the exact sequence for N an r-cyclic extension of N .

1 −→ N −→ G −→ Cr −→ 1

Let’s probe this a bit. Let h ∈ G be such that Nh generates Cr. So

Ne = (Nh)r = Nhr

so hr ∈ N (and furthermore no lower power of h is in N). We also have the
conjugation by h map, ϕh, restricts to N to give an automorphism of N . A priori
it is not an inner automorphism of N since h 6∈ N . We do have that ϕrh = ϕhr is
an inner automorphism of N since hr ∈ N . Furthermore ϕh(hr) = hr (check!).

We now “reverse” the discussion above: we show how to create a new group G
from N and r and some other information.

Definition 9.3. Let N be a group, r a positive integer, v ∈ N and τ ∈ Aut(N)
satisfy the following two conditions:

(1) τ(v) = v

(2) τ r = ϕv
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Define a new group G—the r-cyclic extension of N defined by τ and v—whose
elements are nai with n ∈ N and i ∈ {0, . . . , r − 1} and with multiplication defined
by

ar = v

an = τ(n)a

for any n ∈ N .

Problems 9.4.

(1) Show that

n1a
in2a

j =

{
n1τ

i(n2)a
i+j when i+ j < r

n1τ
i(n2)va

i+j when i+ j ≥ r

(2) Show that the axioms of a group are satisfied by the definition above. (non-
trivial!)

(3) Let N = C4 = 〈n〉. Then τ must be either the identity map or the map
taking n to n−1. Show that in the latter case v must be e or n2.

(4) Let τ : n 7→ n−1. Show that v = e and v = n2 give the groups Q and D4,
but which is which?!

(5) Investigate the groups obtained by taking τ the identity map.

(6) Show that when N is abelian and τ is the identity the construction gives an
abelian group.

Definition 9.5. Define the group Dicr via generators and relations by

Dicr = 〈n, a | n2r = e; a2 = nr; an = n−1a〉

Problems 9.6.

(1) Show that Dicr is a 2-cyclic extension of C2r and identify an appropriate τ
and v from the definition.

(2) Show that any element of Dicr may be written uniquely in the form niaj for
i ∈ {0, . . . , 2r − 1} and j ∈ {0, 1}.

(3) Find a general formula for the product of two elements in Dicr.

(4) Find the order of each element of Dicr. [Square nia.]
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