Definition 7.8. Let N, H be two groups and let $\varphi : H \longrightarrow \operatorname{Aut}(N)$ be a homomorphism. Write $\varphi(h)$ as φ_h . Define a new group with elements $N \times H$ and multiplication defined by

$$(n_1, h_1) * (n_2, h_2) = (n_1 \varphi_{h_1}(n_2), h_1, h_2)$$

This is the *(external) semi-direct product* of N and H defined by φ and is written $N \rtimes_{\varphi} H$.

We usually just write the elements as nh and the product is $n_1h_1n_2h_2 = n_1\varphi_{h_1}(n_2)h_1h_2$.

Problems 7.9.

- (1) Show that each element does indeed have an inverse, and that the associative law holds. Thus this operation does indeed define a group.
- (2) Show that the multiplication is complete determined by the relation $hn = \varphi_h(n)h$.
- (3) In Gl(n, F), for F a field, let T be the upper triangular matrices with nonzeros on the diagonal; let U be the upper triangular matrices with 1's on the diagonal and let D be the diagonal matrices with nonzero elements on the diagonal. Show that $T = U \rtimes D$. Describe the map $\varphi : D \longrightarrow Aut(U)$.

Example 7.10. $D_n \cong C_n \rtimes_{\varphi} C_2$ where $\varphi : C_2 \longrightarrow \operatorname{Aut}(C_n)$ takes the non-identity element of C_2 to the automorphism of C_n taking n to n^{-1} . $S_n = A_n \rtimes \langle (1,2) \rangle$. $S_4 = V \rtimes S_3$ where V is Klein-4 subgroup with elements of the form (a,b)(c,d). What is the map φ ? $\operatorname{Gl}(n,F) \cong \operatorname{Sl}(2,F) \rtimes F*$.

Proposition 7.11. Suppose there is a short exact sequence

$$1 \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\theta} H \longrightarrow 1$$

and there is a map $\alpha : H \longrightarrow G$ such that $\theta \circ \alpha$ is the identity on H. Then G is the internal direct product $N \rtimes \alpha(H)$.

Proof. We have $\alpha(H)$ is a subgroup of G. Suppose $g \in \alpha(H) \cap N$. Then $g = \alpha(h)$ and $\theta(g) = e_H$. Consequently $h = \theta \circ \alpha(h) = \theta(g) = e_H$. Thus $\alpha(H) \cap N = \alpha(e_H) = e_G$.

We next show that $\alpha(H)N = G$. Let $g \in G$ and let $g' = \alpha(\theta(g))$. Then $g' \in \alpha(H)$. We also have

$$\theta(g^{-1}g') = \theta(g)^{-1}\theta(\alpha(\theta(g))) = \theta(g)^{-1}\theta(g) = e_H$$

Then $g^{-1}g' \in N$. Setting $g^{-1}g' = n \in N$, we get $g = g'n^{-1}$. Thus an arbitrary element of G is in $\alpha(H)N$ as was to be shown.

Here is another problem, I haven't checked whether it is a semi-direct product.

Problems 7.12.

- (1) Let H = H(F) be the set of 3 by 3 upper triangular matrices over a field F with 1s on the diagonal. Show that this is indeed a subgroup of Gl(3, F).
- (2) Show that Z(H) consists of all matrices of the form $\begin{bmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Furthermore

$$Z(H) \cong (F, +).$$

(3) Show that the following 3 types of matrices generate this group.

[1	a	0		[1	0	c		1	0	0
0	1	0	,	0	1	0	,	0	1	b
0	$\begin{array}{c} 1 \\ 0 \end{array}$	1			0			0	0	$\begin{bmatrix} 0 \\ b \\ 1 \end{bmatrix}$

- (4) Show that $H(\mathbb{F}_p)$ is generated by 3 matrices, those in the form above with a = b = c = 1.
- (5) Show that $H(\mathbb{F}_2) \cong D_4$.

8 Finitely Generated Abelian Groups

We will write the group operation additively. For A an abelian group, $a \in A$, and m an integer, $mA = a + \cdots + a$ with m summands. The order of a is the smallest positive integer m such that ma = 0. One can check that ma + na = (m + n)a and (mn)a = m(na).

Let's start with abelian groups that we understand well.

Theorem 8.1. Let m_1, \ldots, m_t be positive integers and $A = \mathbb{Z}/m_1 \times \cdots \times \mathbb{Z}/m_t$. Let $P = \{p_1, \ldots, p_s\}$ be the set of all primes dividing $m_1m_2 \cdots m_t$ and let the m_j have factorizations $m_j = \prod_{i=1}^s p_i^{e_{ij}}$ (allowing some $e_{ij} = 0$). Then

$$A \cong A_1 \times \cdots \times A_s$$

where $A_i = \mathbb{Z}/p_i^{e_{i1}} \times \mathbb{Z}/p_i^{e_{i2}} \times \cdots \mathbb{Z}/p_i^{e_{it}}$

Proof. We know that $\mathbb{Z}/m_j \cong \mathbb{Z}/p_1^{e_{1j}} \times \cdots \times \mathbb{Z}/p_s^{e_{sj}}$. Thus

$$A = \mathbb{Z}/m_1 \times \cdots \times \mathbb{Z}/m_t$$

$$\cong \mathbb{Z}/p_1^{e_{11}} \times \cdots \times \mathbb{Z}/p_s^{e_{s1}}$$

$$\times \mathbb{Z}/p_1^{e_{12}} \times \cdots \times \mathbb{Z}/p_s^{e_{s2}}$$

$$\cdots$$

$$\times \mathbb{Z}/p_1^{e_{11}} \times \cdots \times \mathbb{Z}/p_s^{e_{st}}$$

$$\cong \mathbb{Z}/p_1^{e_{11}} \times \cdots \times \mathbb{Z}/p_1^{e_{1t}}$$

$$\times \mathbb{Z}/p_2^{e_{21}} \times \cdots \times \mathbb{Z}/p_2^{e_{2t}}$$

$$\cdots$$

$$\times \mathbb{Z}/p_s^{e_{s1}} \times \cdots \times \mathbb{Z}/p_s^{e_{st}}$$

$$\cong \times A_1 \times \cdots \times A_s$$

Definition 8.2. The multiset $\{p_i^{e_{ij}} : i = 1, ..., s; \text{ and } j = 1, ..., t\}$ is the set of *elementary divisors* of A.

Theorem 8.3. With the notation of the previous theorem, for each i let $f_{i1} \geq f_{i2} \cdots \geq f_{it}$ be a permutation of the exponents $e_{i1}, \ldots e_{it}$ putting them in decreasing order. Let $n_j = \prod_{i=1}^t p_i^{f_{ij}}$. Then $n_t \mid n_{t-1} \mid \cdots \mid n_1$ and $A \cong \mathbb{Z}/n_1 \times \cdots \times \mathbb{Z}/n_t$.

Proof. The fact that $n_j \mid n_{j-1}$ follows from $f_{ij} \leq f_{i,j-1}$. Stepping into the previous proof, by permuting the lines with the e_{ij} we have

$$A \cong \mathbb{Z}/p_1^{f_{11}} \times \cdots \times \mathbb{Z}/p_1^{f_{1t}}$$
$$\times \mathbb{Z}/p_2^{f_{21}} \times \cdots \times \mathbb{Z}/p_2^{f_{2t}}$$
$$\cdots$$
$$\times \mathbb{Z}/p_s^{f_{s1}} \times \cdots \times \mathbb{Z}/p_1^{f_{st}}$$
$$\cong \mathbb{Z}/p_1^{f_{11}} \times \cdots \times \mathbb{Z}/p_s^{f_{s1}}$$
$$\times \mathbb{Z}/p_1^{f_{12}} \times \cdots \times \mathbb{Z}/p_s^{f_{s2}}$$
$$\cdots$$
$$\times \mathbb{Z}/p_1^{f_{1t}} \times \cdots \times \mathbb{Z}/p_s^{f_{st}}$$
$$\cong \mathbb{Z}/n_1 \times \cdots \times \mathbb{Z}/n_t$$

Definition 8.4. The n_j (that are not 1) in the previous theorem are called the *invariant factors* of A.

We want to show that any finite abelian group is the product of cyclic groups, as in the previous theorem, so it has a set of elementary divisors and invariant factors.

Definition 8.5. Let A be an abelian group. For $m \in \mathbb{N}$ let

$$mA = \{ma : a \in A\}$$

$$A[m] = \{a : ma = 0\}$$

$$A(p) = \{a \in A : \operatorname{ord}(a) = p^k \text{ for some } k\}$$

We leave it as an exercise to prove that mA, A[n] and A(p) are all subgroups of A. Also that $A(p) = \bigcup_{i=0}^{\infty} A[p^i]$, and for A finite $A(p) = A[p^k]$ for some large enough k. The fact that A[m] and A(p) are group follows from the basic result that if a and b commute, then the order of a + b divides $\operatorname{lcm}(\operatorname{ord}(a), \operatorname{ord}(b))$.

Problems 8.6.

- (1) Find the elementary divisors and the invariant factors for $\mathbb{Z}/50 \times \mathbb{Z}/75 \times \mathbb{Z}/136 \times \mathbb{Z}/21000$.
- (2) How many abelian groups are there of order $p^6q^5r^4$ where p, q, r are distinct primes? How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check your answer against the response to the previous question.

Example 8.7. \mathbb{Q}/\mathbb{Z} is an interesting example. Every element has finite order, but \mathbb{Q}/\mathbb{Z} cannot be written as a direct product of $\langle a \rangle$ and another group H for any nonzero $a \in \mathbb{Q}/\mathbb{Z}$.

Proposition 8.8. Suppose that A is abelian with |A| = mn and m, n coprime.

- (1) mA = A[n]
- (2) A is the internal direct product of A[m] and A[n]

Proof. Let $u, v \in \mathbb{Z}$ be such that um + nv = 1. Let $a \in A[n]$. Then a = (mu + vn)a = m(ua) + v(na) = m(ua), since we assume na = 0. This shows that $A[n] \subseteq mA$. On the other hand, an arbitrary element of mA is ma for $a \in A$. Since |A| = mn, m(na) = (mn)a = 0, and this shows $mA \subseteq A[n]$.

For the second claim of the theorem, we note that $A[m] \cap A[n] = 0$ and a = (um+nv)a = u(ma)+v(na) = m(ua)+n(va) shows that any $a \in A$ can be written as an element of mA = A[n] plus an element of nA = A[m]. Thus A[m]+A[n] = A. This shows A is the internal direct product of A[m] and A[n].

Proposition 8.9. Suppose that $A_1 \times B_1 \cong A_2 \times B_2$ where everything in A_i has order dividing m and everything in B_i has order dividing n, and m, n coprime. Then $A_1 \cong A_2$ and $B_1 \cong B_2$.

Proof. Assume $A_1 \times B_1 \cong A_2 \times B_2$.

$$m(A_i \times B_i) = mA_i \times mB_i$$
$$= \{(0, mb) : b \in B_i\}$$
$$= \{0\} \times B_i$$

The first step because m(a, b) = (ma, mb) and the last step because multiplication by m (coprime to n) gives an automorphism of B_i . Since $m(A_1 \times B_1) \cong m(A_2 \times B_2)$ we get $B_1 \cong B_2$. Similarly we show $A_1 \cong A_2$.

Corollary 8.10. Let $|A| = p_1^{e_1} \dots p_s^{e_2}$ then

$$A \cong A[p_1^{e_1}] \times \dots \times A[p_s^{e_s}] = A(p_1) \times \dots \times A(p_s)$$

This factorization is unique up to reordering.

Proof. Apply induction using the previous propositons.

The previous theorem is the first step in the classification of finite abelian groups. The next step is to classify p-groups. The key lemma follows. Its proof is quite technical and not very illuminating, so I sketch the proof in [Hungerford Sec 8.2].

Lemma 8.11. Let A be a p-group and let a be an element of maximal order. Then $A = \langle a \rangle + K$ for some subgroup K of A.

Proof. Let K be as large as possible such that $K \cap \langle a \rangle = \{0\}$. We want to show that $K + \langle a \rangle = A$. Then the internal direct product theorem says that $A \cong K \times \langle a \rangle$. Suppose $b \in A \setminus (K + \langle a \rangle)$. Do some tricks to show:

- (1) Show there is a $c \in A \setminus (K + \langle a \rangle)$ such that $pc \in K + \langle a \rangle$. [Take the minimal r such that $p^r b \in K + \langle a \rangle$, then let $c = p^{r-1}b$.
- (2) Show there is a $d \in A \setminus (K + \langle a \rangle)$ such that $pd \in K$. [Let pc = k + ma, argue that m = pm', for some integer m' using that a has maximal degree in A and $K \cap \langle a \rangle = \{0\}$. Then set d = c m'a.]

By assumption on K, $(K + \langle d \rangle) \cap \langle a \rangle \neq \{0\}$, so there is some $k \in K$, and nonzero $r, s \in \mathbb{Z}$ such that k + rd = sa.

Now we consider two cases: If $p \mid r$ then $rd \in K$ and consequently $sa \in K$. This contradicts $K \cap \langle a \rangle = \{0\}$. If $p \mid /r$ then there are u, v such that up + rv = 1. Then d = u(pd) + v(rd). The first term is in K and the second in $K + \langle a \rangle$, so $d \in K + \langle a \rangle$, which is a contradiction.

Theorem 8.12. Let A be a p-group. Then A is the direct product of cyclic groups each of which has order a power of p. Consequently, the order of A is also a power of p.

The decomposition is unique (up to reordering). Put another way, two p-groups are isomorphic iff their decompositions have the same number of factors for each power of p.

Proof. The proof is by induction. Using the lemma we can write $A = \langle a \rangle + K$. The subgroup $\langle a \rangle$ is cyclic of order p^k for some k. Applying the induction hypothesis to K gives the result. Since A is the direct product of groups of order a power of p, A itself must have order a power of p.

Clearly, if two groups have the same number of factors for each power of p they are isomorphic. To prove the converse, suppose

$$A \cong (\mathbb{Z}/p)^{k_1} \times (\mathbb{Z}/p^2)^{k_2} \times \cdots \times (\mathbb{Z}/p^r)^{k_r}$$

So some factorization of A has k_i terms equal to \mathbb{Z}/p^i . We can recover the k_i iteratively. Since $\log_p(\mathbb{Z}/p^n) = n$, we have $\log_p(|A|) = \sum_{i=1}^r ik_i$. Notice that $p^{n-1}\mathbb{Z}/p^n \cong \mathbb{Z}/p$ and $p^k\mathbb{Z}/p^n$ is trivial for $k \ge n$. Thus the subgroup $p^{r-1}A$ is isomorphic to

$$p^{r-1}A \cong (\mathbb{Z}/p)^{k_r}$$

Thus we have $\log_p(|p^{r-1}A|) = k_r$. Similar computations for $p^i A$ with $i = r-2, r-3, \ldots, 1$ allows one to recover the other k_i . (Try it as an exercise!)

From the two previous theorems we obtain the fundamental theorem.

Theorem 8.13 (Fundamental Theorem of Finite Abelian Groups). Let A be an abelian group of order $p_1^{e_1} \dots p_r^{e_r}$. Then A is a direct product of cyclic groups, each having order a power of one of the p_i . If we write

$$A(p_i) \cong \mathbb{Z}/p_i^{a_{i,1}} \times \mathbb{Z}/p_i^{a_{i,2}} \times \dots \mathbb{Z}/p_i^{a_{i,s_i}}$$

then for each i, $\sum_{\ell=1}^{s_i} a_{i,\ell} = e_i$. The decomposition is unique, up to reordering.

Problems 8.14.

- (1) Classify all abelian groups of order 84,000.
- (2) Let A be an abelian group and let T be the set of elements with finite order. Show that T is a subgroup of A. Show that A/T has no elements of finite order.
- (3) Give an example of a finitely generated group in which the elements of infinite order do *not* form a subgroup. (Compare with the previous problem.)
- (4) Let $G \longrightarrow \mathbb{Z}$ be a surjective homomorphism. Show that G has a subgroup H and an element a such that G is the internal direct product $H \times \langle a \rangle$.
- (5) Let G be a finite abelian p-group. Use the classification of finite abelian groups to show that pG < G. Under what conditions is pG = 0?
- (6) Show that pG = G is possible for an infinite group.

9 Free groups, generators and relations

Definition 9.1. G is called a cyclic extension of N when $G/N \cong C_r$ where C_r is the cyclic group of order r.

Example 9.2. The quaternions are a 2-cyclic extension of $\mathbb{Z}/4$. The dihedral group D_r is a 2-cyclic extension of \mathbb{Z}/r .

Consider the exact sequence for N an r-cyclic extension of N.

 $1 \longrightarrow N \longrightarrow G \longrightarrow C_r \longrightarrow 1$

Let's probe this a bit. Let $h \in G$ be such that Nh generates C_r . So

$$Ne = (Nh)^r = Nh^r$$

so $h^r \in N$ (and furthermore no lower power of h is in N). We also have the conjugation by h map, φ_h , restricts to N to give an automorphism of N. A priori it is not an inner automorphism of N since $h \notin N$. We do have that $\varphi_h^r = \varphi_{h^r}$ is an inner automorphism of N since $h^r \in N$. Furthermore $\varphi_h(h^r) = h^r$ (check!).

We now "reverse" the discussion above: we show how to create a new group G from N and r and some other information.

Definition 9.3. Let N be a group, r a positive integer, $v \in N$ and $\tau \in Aut(N)$ satisfy the following two conditions:

- (1) $\tau(v) = v$
- (2) $\tau^r = \varphi_v$

Define a new group G—the *r*-cyclic extension of N defined by τ and *v*—whose elements are na^i with $n \in N$ and $i \in \{0, \ldots, r-1\}$ and with multiplication defined by

$$a^r = v$$
$$an = \tau(n)a$$

for any $n \in N$.

Problems 9.4.

(1) Show that

$$n_1 a^i n_2 a^j = \begin{cases} n_1 \tau^i(n_2) a^{i+j} & \text{when } i+j < r\\ n_1 \tau^i(n_2) v a^{i+j} & \text{when } i+j \ge r \end{cases}$$

- (2) Show that the axioms of a group are satisfied by the definition above. (non-trivial!)
- (3) Let $N = C_4 = \langle n \rangle$. Then τ must be either the identity map or the map taking n to n^{-1} . Show that in the latter case v must be e or n^2 .
- (4) Let $\tau : n \mapsto n^{-1}$. Show that v = e and $v = n^2$ give the groups Q and D_4 , but which is which?!
- (5) Investigate the groups obtained by taking τ the identity map.
- (6) Show that when N is abelian and τ is the identity the construction gives an abelian group.

Definition 9.5. Define the group Dic_r via generators and relations by

$$\text{Dic}_r = \langle n, a \mid n^{2r} = e; a^2 = n^r; an = n^{-1}a \rangle$$

Problems 9.6.

- (1) Show that Dic_r is a 2-cyclic extension of C_{2r} and identify an appropriate τ and v from the definition.
- (2) Show that any element of Dic_r may be written uniquely in the form $n^i a^j$ for $i \in \{0, \ldots, 2r-1\}$ and $j \in \{0, 1\}$.
- (3) Find a general formula for the product of two elements in Dic_r .
- (4) Find the order of each element of Dic_r . [Square $n^i a$.]