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Chapter 1

Getting Started

1.1 The Integers

What are the integers? This is not a simple question, if you want to be rigorous
about defining the integers. Formally doing so would distract from developing our
core topics, so we will take as our foundation the following. The ring of integers
Z is

• the set of natural numbers N = {1, 2, 3, . . . } along with the number 0 and
the additive inverses of the natural numbers {−1,−2,−3. . . . };

• the operation of addition (and the properties of addition we know from ele-
mentary school);

• the operation of multiplication (and the properties of multiplication we know
from elementary school);

• the ordering defined by positive numbers being greater than 0 and b > a if
and only if b− a > 0;

• the well-ordering principle—any non-empty subset of the natural numbers
has a least element.

We may think of subtraction as either a − b = a + (−b) or equivalently (after
some argument) a− b is the the number s (which we should show is unique) such
that s+ b = a. Division will be dealt with below. While the integers are familiar
from elementary school, the well-ordering principle is not (unless you attended
a very special elementary school!). It is actually key to the formal definition of
the integers (see the Peano axioms and [Men15]) and to mathematical induction
stripped to its essentials:
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The Principle of Mathematical Induction
Let K be a subset of N satisfying these two properties

• 1 ∈ K;

• whenever a ∈ K it is also true that a+ 1 ∈ K.

Then K = N.

Beyond the basic properties above there are five main results for the integers
that are fundamental. For the purposes of easy reference I will call them the
Quotient-Remainder (QR) Theorem, the Greatest Common Divisor (GCD) Theo-
rem, the Euclidean Algorithm, the Prime-Irreducible Theorem (Euclid’s lemma),
and the Unique Factorization Theorem (the Fundamental Theorem of Arithmetic).
The Quotient-Remainder Theorem and Unique Factorization will be familiar; the
other results, perhaps less so. The proofs here will be concise, and just a few
exercises are included because this material is treated very well in other resources
[Hun12].

In addition to these key results about the integers we introduce modular arith-
metic in this section. Modular arithmetic creates a new algebraic structure know
as the integers modulo n (for some n > 1), which we write Z/n.

The Quotient-Remainder Theorem and Divisibility

We have implicitly used the Quotient-Remainder Theorem since elementary school,
when we computed (the unique!) quotient and remainder of two integers. The
proof relies on something sophisticated: the well-ordering principle.

Theorem 1.1.1 (Quotient-Remainder). Let a and b be integers with b 6= 0. There
exist unique integers q, r such that

(1) a = bq + r, and

(2) 0 ≤ r < |b|.

If the remainder of a divided by b is 0, we say b divides a and a is a multiple
of b.

Proof. We prove this for b > 0 and leave the case b < 0 as an exercise. Consider
the set S = {a− bc : c ∈ Z} ∩ N≥0. As a nonempty subset of the nonnegative
integers, it has a least element. Let r be the minimal element of S, and let q be
the integer such that r = a − bq. If r ≥ b we would have a contradiction because
then r − b ≥ 0 and r − b = a− b(q + 1) would put r − b ∈ S. Thus we must have
0 ≤ r < b. This establishes existence of q, r as claimed.
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To prove uniqueness, suppose another r′, q′ satisfy (1) and (2) and suppose
without loss of generality that r ≥ r′. (We want that r′ = r and q′ = q.) Then
a = bq + r = bq′ + r′ so r − r′ = b(q′ − q). Now b > r − r′ ≥ 0 but b(q′ − q)
is a multiple of b. The only multiple of b in the interval [0, b) is 0, so the only
possibility is r − r′ = 0 = b(q − q)′, and therefore r = r′ and q = q′.

It is fairly common in programming languages (in particular in Python and
Sage) to write the integer quotient as a//b and the remainder as a%b. We will use
this in the exercises and the discussion of the Euclidean algorithm in this chapter.

Exercises 1.1.2. More on the Quotient-Remainder Theorem.

(a) Prove the QR Theorem for negative integers: Only minor changes are needed.

(b) For b > 0, show that a//(−b) = −(a//b) and a%(−b) = a%b. [Don’t let the
notation make this hard!]

(c) Prove this alternative version of the QR Theorem. Let a and b be integers
with b 6= 0. There exist unique integers q, r such that

(1) a = bq + r, and

(2) |b|/2 < r ≤ |b|/2

[There are two approaches: use the existing QR Theorem to prove the alter-
native, or prove it from scratch by redefining S and modifying the proof of
the QR Theorem.]

Let a and b be integers, at least one of which is not 0. The common divisors
of a and b are the integers that divide both a and b. The greatest common
divisor (gcd) is the largest positive integer dividing both a and b. The common
multiples of a and b are the integers that are multiples of both a and b. The
least common multiple (lcm) is the smallest positive integer that is a multiple
of both a and b.

A linear combination of a and b is an integer that can be expressed as au+bv
for some integers u and v.

Exercises 1.1.3. Properties of divisibility.

(a) Show that if b divides a and d divides b that d also divides a.

(b) Show that if d divides a and d divides b that d also divides any linear com-
bination of a and b. (In particular, this proves Lemma 1.1.5 below.)

The following result is an important property of the integers, and not an obvious
one. It is an important tool in the study of groups. We will see echos of this result
and the proof when we study ideals in rings (Section 4.4).
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Theorem 1.1.4 (GCD). Let a and b be integers, at least one of them nonzero.
The gcd of a and b is the smallest positive linear combination of a and b. In
particular, gcd(a, b) = au+ bv for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of
gcd(a, b).

Proof. Let S = {ar + bs : r, s ∈ Z} be the set of all linear combinations of a and b.
Let d be the smallest positive element of S and let u, v be such that d = au+ bv.
I claim d divides a and b.

By the QR Theorem applied to a and d, a = dq + r for some integer q and
nonnegative integer r < d. Then

r = a− dq = a− (au+ bv)q = a(1− uq)− bvq

This shows that r is also in S. But, d is the smallest positive element of S, and
0 ≤ r < d. This shows r = 0, so d divides a.

Similarly, one shows d divides b, so d is a common divisor of a and b. To show
it is the greatest common divisor, let c be any other common divisor of a and b.
Then c divides au+ bv = d (by divisibility properties). Since d is positive c ≤ d.

Since d divides a and b the elements of S are all divisible by d by Exercise 1.1.3.
On the other hand any multiple of d is a linear combination of a and b since d is.
This establishes the last sentence of the theorem.

We say two integers are coprime (or relatively prime) when their gcd is 1.
Given a and b, how do we find their gcd? The answer (for arbitrary large

integers) is not to factor each and look for common factors. Rather, use the
Euclidean algorithm.

Let’s assume a ≥ b ≥ 0. Recall that a//b is the integer quotient and a%b the
remainder as determined by the QR Theorem. Set r−1 = a and r0 = b, and define
inductively (while rk 6= 0)

qk = rk−1//rk

rk+1 = rk−1%rk, so that

rk−1 = rkqk + rk+1.

6



Rearranging these equalites by solving for rk+1, we get a sequence

r1 = r−1 − r0q0 = a− bq0
r2 = r0 − r1q1
r3 = r1 − r2q2

...

rk+1 = rk−1 − qkrk
...

rn+1 = rn−1 − qnrn = 0.

The rk are a strictly decreasing sequence of nonnegative integers, so the process
must terminate: for some n, rn+1 = 0 so rn divides rn−1. Now we make use of the
following lemma, proved using basic divisibility properties (see Exercise 1.1.3).

Lemma 1.1.5. For integers a, b, c, s such that a = bs + c, we have gcd(a, b) =
gcd(b, c).

Let’s apply this to the sequence rk, letting n be minimal such that rn+1 = 0.
We have (since rn+1 = 0)

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, rn+1) = gcd(rn, 0) = rn

This argument shows that the Euclidean algorithm produces the gcd of a and b.
In the following Sage code we only keep two of the remainders at any time, not
the whole sequence: after the kth pass through the while loop, r in the algorithm
is rk−1 and s is rk.

def euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

r = a

s = b

while s != 0:

rem = r %s

r = s

s = rem

return r
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There is a heftier Euclidean algorithm—often called the Extended Euclidean
algorithm—which produces two integers u, v such that au + bv = gcd(a, b). I like
the following matrix version of the algorithm. Let

Qk =

[
−qk 1

1 0

]
and Rk =

[
rk
rk−1

]
where the sequence rk and qk are the same as used above in the Euclidean algo-
rithm. Verify that Rk+1 = QkRk. Consequently,

Rn+1 =

[
0
rn

]
= QnQn−1 · · ·Q0R0 (1.1)

where R0 =

[
b
a

]
. Let M =

[
M1,1 M1,2

M2,1 M2,2

]
= QnQn−1 · · ·Q0. Then, after the

algorithm terminates, we have M2,1b+M2,2a = rn = gcd(a, b).
Here is Sage code for the extended Euclidean algorithm. (Note that Sage

indexes rows and columns of matrices starting from 0 not 1.) Initially M is the

2×2 identity matrix and R is the matrix

[
a
b

]
. The algorithm iteratively computes

q (which, at the kth iteration is qk−1), the quotient of M1,0 by M0,0. It forms the

matrix Q =

[
−q 1
1 0

]
and multiplies both R and M by Q. The result after iteration

k (for k = 1, . . . ) is that R is Rk and M is the product Qk−1Qk−2 · · ·Q1Q0 in (1.1).

def ext_euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

M = matrix.identity(2)

R = matrix(2,1, [b,a])

while R[0,0] != 0:

q = R[1,0]//R[0,0]

Q = matrix(2,2,[ -q , 1, 1, 0])

M = Q * M

R = Q * R

return M

We have proven that the Euclidean algorithm terminates with the greatest
common divisor of the input integers. A bit closer analysis of the algorithm reveals
a connection with the Fibonacci numbers and allows one to bound the number of
steps for the Euclidean algorithm. See [Ros11] for details.
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Theorem 1.1.6 (Euclidean Algorithm). Let a, b be integers with b 6= 0. The
Euclidean Algorithm outputs gcd(a, b) in at most 1 + log2 b/ logα steps, where
α = (1 +

√
5)/2 is the golden ratio. The Extended Euclidean Algorithm outputs

integers u, v with |u| < b and |v| < a such that au+ bv = gcd(a, b).

The greatest common divisor of a finite set of integers (that contains a nonzero
integer) is simply the largest integer that divides each element of the set. A simple
induction argument shows that the set of common divisors of {a1, . . . , an} is equal
to the set of common divisors of {gcd(a1, . . . , an−1), an}. To compute the greatest
common divisor of this set efficiently, one computes iteratively gcd(a1, . . . , ak) =
gcd(gcd(a1, . . . , ak−1), ak). (There are more efficient algorithms, but understand-
ing this approach is sufficient here.)

Exercises 1.1.7. Use the Euclidean algorithm to express the greatest common di-
visor as a linear combination of the given integers.

(a) 89, 24

(b) 24, 40, 30

Primes, Irreducibles, and Unique Factorization

The next main result is the Fundamental Theorem of Arithmetic, which says
(roughly) that every nonzero integer has a unique factorization as a product of
primes. We will now define what it means for an integer to be prime, but it will
not be the school definition. We also define the term irreducible, which is what
we customarily use for primality. The definitions given here are the accepted ones
in more general contexts. Fortunately, the following theorem (Euclid’s Lemma),
which I will refer to as the Prime-Irreducible Theorem shows that for integers the
notions are equivalent.

Definition 1.1.8. Let r be an integer with |r| > 1. We say r is irreducible when
r = ab implies that either a = ±1 or b = ±1 (and the other is ±r). We say r is
prime when r|ab implies r|a or r|b.

Theorem 1.1.9 (Prime-Irreducible). An integer is irreducible if and only if it is
prime.

Proof. We prove this for positive integers; minor adjustments can be made for a
negative number.

Let p > 1 be an irreducible; let us show it is prime. Suppose that p|ab for
some integers a and b. We need to show p|a or p|b. If p divides a we are done, so
suppose it does not divide a. Since p is irreducible, its only positive divisors are 1

9



and p, so the GCD of a and p is 1. By the GCD Theorem, there are integers u, v
such that

1 = au+ pv

Multiplying by b
b = abu+ pbv

Since p|ab we have that p divides the right hand side, thus p divides b.
Suppose now that p > 1 is prime, we will show it is irreducible. Let p = ab be

a factorization of p. We must show one of a or b is ±1. Since p is prime and it
divides (in fact equals) the product ab it must divide one of the factors. Without
loss of generality, say p|a, so a = px for some integer x. Then p = ab = pxb, so
p(1− xb) = 0. This shows that 1− xb = 0, so x = b = ±1.

The previous theorem is the key ingredient to establishing unique factorization.

Theorem 1.1.10 (Unique Factorization). Let a be a positive integer. There is a
nonnegative integer t, there are positive prime numbers p1 < p2 < · · · < pt, and
there are positive integers e1, . . . , et, such that

a = pe11 · · · p
et
t

This factorization of a is uniquely determined.

Proof. TBD

Exercises 1.1.11. The following are consequences of the GCD theorem

(a) Given any set of integers {a1, . . . , an} their greatest common divisor may be
expressed as a linear combination d = u1a1 + . . . unan for ui ∈ Z.

(b) Given a, b ∈ Z, characterize the set of {(u, v) ∈ Z× Z : ua+ vb = gcd(a, b)}.
That is, if (ū, v̄) is one such pair, what are all the others?

Exercises 1.1.12. The following are quick consequences of unique factorization

(a) Every nonzero integer can be uniquely expressed in the form u2eb in which
u = ±1 , e ∈ N0 and b is odd. Generalize this to a statement about rational
numbers.

(b) Every nonzero rational number a can be uniquely expressed in the form

a = upe11 · · · p
et
t

for some t ∈ N0, prime numbers p1 < p2 < · · · < pt, and nonzero integers
e1, . . . , et and u = ±1.
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(c) Any rational number can be expressed in a unique way in the form a/b with
a ∈ Z and b ∈ N with gcd(a, b) = 1. We call this expressing the rational
number in lowest terms.

Exercises 1.1.13. This will be easier to do using unique factorization than just
the GCD theorem. Let {a1/b1, . . . , an/bn} be a set of rational numbers in lowest
terms. Let B = lcm {b1, . . . , bn} and A = gcd {a1, . . . , an}.

(a) Show that Bai/(Abi) is an integer for all i = 1, . . . , n .

(b) Show that gcd {Ba1/Ab1, . . . , Ban/Abn} = 1. [Suppose p is a prime dividing
B, show there is some i such that p is not a factor of Bai/(Abi).]

Modular Arithmetic

Our discussion of the integers culminates with a quick summary of arithmetic
modulo an integer n. This is a model for the construction of quotient groups and
quotient rings that will be taken up later.

Definition 1.1.14. Let n be a nonzero integer. For integers a and b we say a is
congruent modulo n to b when n divides a− b.

Theorem 1.1.15. Congruence modulo n is an eqivalence relation. Furthermore,
the set {0, 1, . . . , n − 1} is a system of representatives for congruence modulo n
in the sense that each integer a is congruent modulo n to exactly one element of
{0, 1, . . . , n− 1}.

Proof. The relation of being congruent modulo n is clearly reflexive, since for any
a ∈ Z, n|(a − a). It is symmetric because if n|(a − b) then also n|(b − a). It is
transitive because if a is congruent to b and b is congruent to c modulo n then
n|(a−b) and n|(b−c). This implies that n divides the sum (a−b)+(b−c) = a−c,
so a is congruent to c modulo n.

From the Quotient-Remainder Theorem, an integer a is congruent to its re-
mainder when divided by n, since there is an integer q such that a = nq+ r. This
remainder is one of the elements of {0, 1, . . . , n− 1}. No two of these numbers
differ by a multiple of n so they are distinct modulo n.

The integers n and −n give the same equivalence relation, so we always use
positive integers for the modulus. It is common to write [a]n for the congruence
class of a modulo n, whenever we need to be careful to distinguish between the
integer a and the congruence class, or when we have more than one modulus to
worry about. If there is a unique modulus the subscript n may be omitted. If it is
clear from context that we are working modulo n, we may simply write a.

Finally we have:
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Theorem 1.1.16 (Arithmetic modulo n). Suppose that a ≡ b mod n and r ≡
s mod n. Then a + r ≡ b + s mod n and ar ≡ bs mod n. Thus, arithmetic on
congruence classes modulo n is well-defined as follows.

• [a] + [r] = [a+ r]

• [a] ∗ [r] = [ar]

Proof. Suppose that a ≡ b mod n and r ≡ s mod n. We have a = b+ jn for some
integer j and r = s + kn for some integer k. Then a + r = b + s + (j + k)n so
a+ r ≡ b+ s mod n. We also have ar = bs+ (ak + bj + jkn)n so ar ≡ bs mod n.

This shows that no matter what element of an congruence class is used to
represent the class, arithmetic operations modulo n will give the same result.

We will write Z/n for the set of congruence classes modulo n, with the opera-
tions + and ∗. (It is also common to use Zn, but Z/n is consistent with notation
we will use later.) When there is no chance of ambiguity, we write the congruence
classes as 0, 1, . . . , n − 1 (without the brackets and using the least nonnegative
representatives for each class). But, sometimes it is handy to be a bit flexible. For
example it is good to remember that n− b is equal to −b in Z/n. So (in Z/n)

b(n− 1) = (−1)b = n− b.

Exercises 1.1.17.

(a) Let p be a prime number. Let [a] ∈ Z/p with [a] 6= [0] (so a is not divisible
by p). Use the GCD Theorem 1.1.4 to show there is some r ∈ Z/p such that
[a][r] = [1].Consequently, each nonzero element of Z/p has a multiplicative
inverse.

(b) Extend this result, partially, to Z/n for composite n. If [a] ∈ Z/n is such
that the integer a is coprime to n, then there is some [r] ∈ Z/n such that
[a][r] = [1].

(c) Use the Quotient-Remainder Theorem from Exercises 1.1.2 to show alterna-
tive sets of representatives for the integers modulo n are:

− n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2
for n odd, and,

− n− 2

2
,−n− 4

2
, . . . ,

n− 4

2
,
n− 2

2
,
n

2
for n even.
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1.2 Groups, Rings, and Fields

Let us now introduce our three objects of study: groups, rings, and fields. This
section will discuss some familiar number systems in the context of groups, rings,
and fields. We include also some perspective on the history of the number systems
as well as their appearance in our system of education.

Definition 1.2.1. A binary operation on a set S is a function from S × S to
S. A unary operation on S is a function from S to S. An “operation” on S is
usually assumed to be binary if not stated otherwise1.

A binary operation ∗ on S is associative when (a ∗ b) ∗ c = a ∗ (b ∗ c). It is
commutative when a∗ b = b∗a. It has an identity element when there is some
element e ∈ S such that a ∗ e = e ∗ a = a for all a ∈ S.

A group has one binary operation, generally denoted ∗, while rings and fields
have two binary operations, generally denoted + and ∗.

Definition 1.2.2. A group is a set G with a binary operation ∗ and a unary
operation, denoted a 7−→ a−1, satisfying the following properties.

(1) Associativity of ∗.

(2) Identity for ∗: There is an element, generally denoted e, such that e ∗ a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

Definition 1.2.3. A ring is a set R, with two operations + and ∗ that satisfy the
following properties.

(1) Associativity for both + and ∗.

(2) Commutativity for both + and ∗.

(3) Identity elements for both + and ∗. There is some element in R, that we
call 0, such that a+ 0 = a and there is an element, that we call 1, such that
a ∗ 1 = a.

1One can define ternary (S × S × S −→ S) and, more generally, n-ary operations, but we will
have no use for these.
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(4) Inverses for +. For each a ∈ R there is some other element, which we write
−a, such that a+ (−a) = 0.

(5) Distributivity of ∗ over +. That is, a ∗ (b+ c) = a ∗ b+ a ∗ c.

A field is a ring with one additional property,

(6) Inverses for ∗. For each nonzero a ∈ R there is some other element, that we
write a−1, such that a ∗ a−1 = 1.

Comparing these definitions, one sees that a ring R under the operation +
is an abelian (commutative) group with identity element 0 and additive inverse
operation a 7−→ −a. Under the operation of multiplication, ∗, a ring may lack the
property of inversion. A field F is an abelian group under + and the set of nonzero
elements, F ∗ = F \ {0}, is an abelian group under ∗. The interaction between the
two operations of + and ∗ for both rings and fields is given by the distributive
property.

Now to the question: what examples do we have of groups, rings, and fields?

Familiar Rings and Fields

The first number system that a child learns in school is the natural numbers
N = {1, 2, 3, 4, . . . }, and eventually this is expanded to the integers by including 0
and the additive inverse of each positive integer. The integers, denoted Z, are an
abelian group under addition. Once the operation of multiplication as repeated
addition is introduced, we have the first example of a ring. The integers in fact
form the prototypical ring, as we shall see in Theorem 4.2.11.

Students in elementary school—the lucky ones—may also learn “clock arith-
metic” in which addition is done on a clock, so 8:00 plus 7 hours is 3:00. This is
essentially modular arithmetic with modulus 12 (although we usually use repre-
sentatives 1:00, 2:00, . . . , 12:00 rather than using 0:00, 1:00, . . . , 11:00). We saw in
Section 1.1 that multiplication is also well defined modulo n, and one can check
that the properties of a ring are satisfied. We will denote this number system Z/n
(although Zn is also commonly used).

The next step in mathematics education is to expand this integer number sys-
tem. The integers do not form a field since the only numbers with a multiplicative
inverse in Z are ±1. There is a complicated process that enlarges the set of integers
by adding fractions to create the rationals, Q. I say the process is complicated
because lots of people have trouble understanding fractions well, and a key part
of the problem is that a given number has an infinite number of different names:
1/2 = 2/4 = 3/6 = · · · . The process of forming fractions can be generalized to
other rings, but it has delicate and subtle steps involving equivalence relations.
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When you see the construction in Section 4.7 you may appreciate that these sub-
tleties are closely tied to the difficulties people have with fractions.

There are two other fields that are introduced in secondary school education,
although they are challenging to understand fully: the real numbers R, and the
complex numbers C. Formally defining the real numbers is a sophisticated process,
but treating R as the set of all decimal numbers (including infinite non-repeating
ones) and focusing on the number line is a way to work with them effectively
enough to do most college level mathematics. We won’t have much need for the
real numbers, but the relationship between the reals and the complex numbers is
something that is key to studying fields in general. A complex number is of the form
a+bi in which a, b ∈ R and i is the square root of−1. Addition is “componentwise,”
(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, and the additive inverse of a+ bi is −a− bi.
Multiplication is based on i2 = −1: (a+ bi) ∗ (c+ di) = (ac− bd) + (ad+ bc)i. One
can check that (a− bi)/(a2 + b2) is the multiplicative inverse of a+ bi. With these
operations, C is a field.

In the discussion of the complex numbers above there was actually no need
to use real numbers for a, b, c, d. We could have restricted them to be rational
numbers and the statements about addition, multiplication and inverses would
still hold true. Thus we can introduce a field derived from Q that includes i and
uses the rules above for addition, multiplication, and the inverses for each. We call
this field the Gaussian rationals Q(i).

There is one other field that is accessible to those who have learned “clock
arithmetic.” If our clock had a prime number p of positions, we would get Z/p,
in which every nonzero element has a multiplicative inverse, as was shown in
Exercise 1.1.17. When we focus on this modular ring as a field we will write it as
Fp, instead of Z/p. Thus we have our slate of elementary fields, Q, Q(i) and Fp,
supplemented if we want by R and C.

Each of these fields is of course a ring. Our collection of rings that are not fields
includes Z and Z/n for n not a prime. We may supplement it by the Gaussian
integers

Z[i] = {a+ bi : a, b ∈ Z}

It is routine to check that this is a ring. Notice that there are 4 elements that have
multiplicative inverses, ±1,±i.

All of our rings are groups under addition and we can study them as groups
by “forgetting” the multiplicative structure (“forget” is actually a term used by
mathematicians in this context!) We also obtain a few other examples by looking
at the multiplicative group of a field. These are the nonzero rationals, denoted Q∗,
the nonzero elements of Q(i), and the nonzero elements of Fp, denoted F∗p (and
similarly for R and C).
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Figure 1.1: The Pentagon

But what about a group that doesn’t involve ignoring one of the operations on
a ring? In particular, so far, we have no examples of groups in which the operation
is not commutative.

The Dihedral Groups, Dn

Group theory actually arose from the study of transformations that preserve the
structure of a mathematical objects. The symmetry of physical objects is perhaps
the easiest entry point.

Consider a regular pentagon, as in Figure 1.1. Imagine a table with a pentagon
carved into it and a clear pentagon that fits neatly into the enclosure. Enumerate
the “base points” on the table and the vertices of the pentagon as shown.

Rotation counter-clockwise about the center by 72◦ takes the pentagon to itself.
Only the enumeration of the vertices would indicate that a change occured. Calling
this rotation r, we can see there are 5 rotational symmetries, which are rotation
by 72◦, 144◦, 216◦, 288◦ and 360◦. The latter has the same result as not moving
the pentagon at all. This set of rotations is a group where the operation is just
doing one rotation followed by another. Thinking of rotation as a function, we are
composing functions. We may write these rotations as r, r2, r3, r4 and r5; the latter
having the same effect as not moving pentagon at all, so r5 = r0 is the identity
element. It should be clear that ri ∗ rj = ri+j . This group has 5 elements and
“looks a lot like” Z/5 under addition. (It is isomorphic to Z/5, see Section 2.2.)

There is another type of symmetry indicated by the dashed line. For each
vertex of the pentagon 0, . . . , 4 there is a line through that vertex and the midpoint
of the opposite side that is an axis of symmetry for reflection. Let ti be the
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reflection across the line at vertex i. We now have 10 symmetries of the pentagon:
the identity, 4 non-trivial rotations, and 5 reflections. I claim these are the only
symmetries. There are 5 possible places to put vertex 1; but then vertex 2 must be
one notch away, either clockwise or counterclockwise. The positions of the other
vertices are then determined by the rigidity of the pentagon. So there are only
10 possibilities. Notice also that after a rotation, the ordering of the pentagon
vertices increases clockwise, but after a reflection the numbers of the pentagon
vertices increase counterclockwise (and the numbers on the pentagon would be
reversed as in a mirror).

Now let’s consider the group operation: what happens when we follow one
symmetry by another? First, there are some ambiguities to clear up, so we adopt
the following conventions:

• The rotation r is rotation of the vertex i to the position of vertex i − 1,
so it is counter-clockwise when the enumeration on the pentagon increases
clockwise and clockwise when the enumeration on the pentagon increases
counter-clockwise (as it is after a reflection).

• A reflection ti is reflection across the line through the ith vertex of the
pentagon, not the label i on the table.

• The product rti means reflect then rotate as is customary using functional
notation; we apply the function on the right first.

Figure 1.2 shows the two computations, t0r = t2 and rt0 = t3. These are
unequal, so these computations show that we have our first example of a nonabelian
group. It is called the dihedral group of order 5, and written D5.

Definition 1.2.4. For n ≥ 3, the dihedral group of order n, written Dn, is
the group of symmetries of a regular n-gon. In addition to the identity there
are n − 1 rotations and n reflections. The group operation is composition of the
transformations.

One can verify, in a similar manner to that above, that Dn is nonabelian for
all n.

We can consider each of the symmetries of the pentagon as a function on Z/5
that assigns to the base point a on the table the index of the pentagon vertex
at position a after applying the symmetry. So r(a) = a + 1, and ri(a) = a + i
(computing modulo 5). The following exercise develops this example in more
detail.

Exercises 1.2.5. Continuing with the D5 example above, the goal of this problem
is to find formulas for the product of two arbitrary elements of D5. We will use
arithmetic in Z/5 with the system of representatives 0, 1, 2, 3, 4.
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(d) After rt0 = t3

Figure 1.2: The pentagon after various transformations
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(a) Observe that the reflection ti applied to the original position of the pentagon
(in Figure 1.1) switches i+1 with i−1 and i+2 with i−2 where computations
are modulo 5. Show that when ti is applied to the original position of
the pentagon the vertex at base point a is 2i − a. We can write this as
ti(a) = 2i− a.

(b) Show that rti = ti+3 by arguing that rti is a reflection and that, applied to
the pentagon in the original position, it takes i+ 3 to itself.

(c) Find a formula for rjti; that is, give a function of Z/5 [Hint: linear] for
rjti(a). Do the same for tir

j .

(d) Explain why the product of two reflections is a rotation, and find a formula
for titj(a).

The Symmetric Groups, Sn

Recall that a function from one set to another is a bijection when it is both injective
(one-to-one) and surjective (onto). If f : A −→ B is a bijection, then there is a well-
defined inverse function, f−1, since each element of B has exactly one preimage. If
f : A −→ A is a bijection from A to itself then we say f permutes the elements of
A; it rearranges them in a sense. We are particularly interested in the case when
A is a finite set, even more specifically the set {1, 2, 3, . . . , n}. In this case it is
convenient to write a permutation as a table with the columns i, f(i). Here are
two examples (it is common to use Greek letters to denote permutations).

σ =

(
1 2 3
1 3 2

)
π =

(
1 2 3
2 3 1

)
Here σ(1) = 1, σ(2) = 3 and σ(3) = 2.

This tabular format makes it evident that there are n! permutations of a set
with n elements: There are n choices for the image of 1, call it a1 ∈ {1, . . . , n},
then there are n−1 possible images for 2, since it must be in {1, . . . , n}\{a1} and
so on. The table would then be(

1 2 3 . . . n
a1 a2 a3 . . . an

)
The tabular form indicates the sense in which a permutation is a rearrangement,
with a1 now being in the first position, a2 in the second, and so on.

Since the composition of two bijections from A to itself is itself a bijection from
A to itself, composition is an operation on the set of permutations. The inverse of
a permutation is also a permutation. Thus we can make the following definition.
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Definition 1.2.6. Let n be a positive integer. The set of all permutations of
{1, 2, 3, . . . , n} along with composition and the unary operation that takes a per-
mutation to its inverse function is called the symmetric group on {1, . . . , n} and
is denoted Sn. We will write composition of permutations using ◦ when empha-
sizing that permutations are functions, but generally we use ∗, which is the usual
notation for a product in groups.

For n = 1 the symmetric group has just 1 element, and for n = 2 it has two.
The group S3 has 6 elements. Three of these elements fix exactly one element, as
σ does, and are called transpositions. The other two are π and π−1 = π ◦π. These
are called 3-cycles. The symmetric groups Sn for n ≥ 3 are nonabelian. One can
compute π ◦ σ and σ ◦ π and see that they are unequal (applying the right hand
function first is our convention).

π ◦ σ =

(
1 2 3
2 1 3

)
σ ◦ π =

(
1 2 3
3 2 1

)
The symmetric groups will be discussed in detail in Section 2.4.
An astute reader has perhaps noticed that the discussion of D5 yielded a per-

mutation of {0, 1, 2, 3, 4} for each element of D5. Allowing ourselves to let S5 be
the permutation group of {0, 1, . . . , 4} for the moment, we have essentially given
a function of D5 into S5. Using a bit of Exercise 1.2.5 (and computing in Z/5) we
have;

rj 7−→
(

0 1 2 3 4
j 1 + j 2 + j 3 + j 4 + j

)
ti 7−→

(
0 1 2 3 4
2i 2i− 1 2i− 2 2i− 3 2i− 4

)
.

One can check that composition of the linear functions from Exercise 1.2.5 agree
with the composition of the permutations; we are just composing functions.

In the terminology of the next chapter, we have given a homomorphism (Sec-
tion 2.2) from D5 to S5 and the image is a subgroup of S5 (Section 2.1).

Symmetry of Other Objects

The aesthetic appeal of symmetrical objects seems to be universal in human cul-
ture. The following images, some purely geometric, and some from artwork of
various civilizations, show how rich the notion of symmetry can be. How does one
describe the symmetry group of each of these objects? How does one understand
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the structure of these groups? These are questions that I hope will motivate the
next two chapters.

NEED SOME IMAGES: CUBE, CRYSTAL, FRIEZE DIAGRAMS, TILINGS,
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1.3 The Univariate Polynomial Ring over a Field

Let F be a field, in particular, we may consider F to be Q, Fp, or any of the other
fields discussed in the previous section. By F [x] we mean the polynomial ring in the
indeterminate x. The key fact about polynomial rings is that all the theorems we
discussed for integers in Section 1.1 also hold—with appropriate modifications—
for polynomial rings over F . These are the Quotient-Remainder (QR) Theorem,
the Greatest Common Divisor (GCD) Theorem, the Euclidean Algorithm, the
Prime-Irreducible Theorem, and the Unique Factorization Theorem. This close
relationship between Z and F [x] is such an important theme in algebra and number
theory that I want to lay out the fundamentals in detail in this section, which
parallels substantially Section 1.1.

We can think of the polynomial ring as

• a vector space over F with an infinite basis 1, x, x2, . . . , and componentwise
addition;

• a multiplicative structure defined by xi ∗ xj = xi+j and the properties of
commutativity, associativity and distributivity of multiplication over addi-
tion.

The result is thus a ring.
Sometimes it is useful to write a polynomial b(x) ∈ F [x] as a sum b(x) =∑∞
i=0 bix

i with the understanding that only a finite number of the bi are nonzero.
When all of the bi = 0 we get the zero polynomial. Suppose b(x) 6= 0 and let
δ be the largest integer such that bδ 6= 0. We call δ the degree of b(x); bδx

δ is
the leading term of b(x); xδ is the leading monomial of b(x); and bδ is the
leading coefficient of b(x). If bδ = 1 we say b(x) is monic. When δ = 0 we say
b(x) is a constant polynomial. The zero polynomial is also considered a constant
polynomial and the degree is sometimes defined to be −∞.

The product of a polynomial a(x) of degree γ and b(x) of degree δ has degree
γ + δ. Rules for divisibility of polynomials are similar to those for the integers.
In particular if a(x) divides b(x) and b(x) divides c(x) then a(x) divides c(x).
Furthermore if d(x) divides both a(x) and b(x) then it divides their sum (and also
any multiple of either a(x) or b(x)).

The Quotient-Remainder Theorem and Divisibility

The following lemma simplifies the proof of the Quotient-Remainder Theorem. It
is worth remarking that we are using the properties of a field when we divide by
bγ .
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Lemma 1.3.1 (Division). Let a(x) and b(x) be in F [x] with degrees γ and δ
respectively and γ > δ. Then the degree of a(x)− aγ

bδ
xγ−δb(x) is less than γ.

Proof. This is a straightforward computation.

a(x)− aγ
bδ
xγ−δb(x)

= aγx
γ + aγ−1x

γ−1 + · · ·+ a1x+ a0

− aγ
bδ
xγ−δ

(
bδx

δ + bδ−1x
δ−1 + · · ·+ b1x+ b0

)
= aγx

γ + aγ−1x
γ−1 + · · ·+ a1x+ a0

−
(
aγx

γ +
aγbδ−1
bδ

xγ−1 + · · ·+ aγb1
bδ

xγ−δ+1 +
aγb0
bδ

xγ−δ
)

=
(
aγ−1 −

aγbδ−1
bδ

)
xγ−1 +

(
aγ−2 −

aγbδ−2
bδ

)
xγ−2 + · · ·

The leading terms of a(x) and
aγ
bδ
xγ−δb(x) cancel and the result has degree less

than γ.

Theorem 1.3.2 (Quotient-Remainder). Let a(x) and b(x) be elements of F [x]
with b(x) 6= 0. There exist unique q(x), r(x) such that

(1) a(x) = b(x)q(x) + r(x), and

(2) deg r(x) < deg b(x).

Proof. Consider the set S = {a(x)− b(x)c(x) : c(x) ∈ F [x]}. The set of degrees
of the elements of S is a nonempty subset of the nonnegative integers, so it has
a least element, δ. There is some polynomial of degree δ in S, call it r(x), and
suppose r(x) = a(x)− b(x)q(x). I claim deg(r(x)) < deg(b(x)). Suppose not. Let
γ = deg(r(x)) and δ = deg(b(x)). Apply Lemma 1.3.1 to r(x) and b(x) to get

r(x)− rδ
bγ
xγ−δb(x) = a(x)− b(x)q(x)− rδ

bγ
xγ−δb(x)

= a(x)− b(x)(q(x) +
rδ
bγ
xγ−δ).

This is also in S and by Lemma 1.3.1 has lower degree than r(x). This contradicts
our choice of δ as the lowest degree of elements in S. Consequently, we must have
deg(r(x)) < deg(b(x)). This establishes existence of q(x) and r(x) as claimed.

To prove uniqueness, suppose another r′(x), q′(x) satisfy (1) and (2). (We want
to show they are equal to r(x) and q(x)!) Then

a(x) = b(x)q(x) + r(x) = b(x)q′(x) + r′(x) so

r(x)− r′(x) = b(x)
(
q′(x)− q(x)

)
.
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The degree on the left hand side is strictly less than the degree of b(x). Since the
right hand side is a multiple of b(x), it must in fact be 0. Thus r(x) = r′(x) and
q(x) = q′(x).

The greatest common divisor of two integers was easy to define since the in-
tegers are well ordered. It is not obvious that, among the common divisors of
a(x), b(x) ∈ F [x], there is just one monic divisor of maximal degree. The following
theorem shows the gcd can be uniquely defined and extends the GCD Theorem to
polynomials. A polynomial combination of a(x) and b(x) is a polynomial that
can be expressed as a(x)u(x) + b(x)v(x) for some u(x), v(x) ∈ F [x].

Theorem 1.3.3 (GCD). Let a(x), b(x) ∈ F [x] with at least one of them nonzero.
There is a unique polynomial d(x) satisfying

(1) d(x) is a common divisor of a(x) and b(x),

(2) d(x) is monic,

(3) d(x) is divisible by all other common divisors of a(x) and b(x) (so it is the
greatest common divisor).

Furthermore, there exist u(x), v(x) ∈ F [x] such that d(x) = a(x)u(x) + b(x)v(x).
The set of all polynomial combinations of a(x) and b(x) equals the set of multiples
of d(x).

Proof. Let S = {a(x)s(x) + b(x)t(x) : s(x), t(x) ∈ F [x]} be the set of all polyno-
mial combinations of a(x) and b(x). Let d(x) be a nonzero polynomial of minimal
degree in S and let u(x), v(x) be such that d(x) = a(x)u(x) + b(x)v(x). We may
assume that d(x) is monic, since any constant multiple of a polynomial in S is also
in S. I claim d(x) divides a(x) and b(x).

By the QR Theorem applied to a(x) and d(x), a(x) = d(x)q(x)+ r(x) for some
q(x) and r(x) in F [x] with deg(r(x)) < deg(d(x)). Then

r(x) = a(x)− d(x)q(x)

= a(x)−
(
a(x)u(x) + b(x)v(x)

)
q(x)

= a(x)
(
1− u(x)q(x)

)
− b(x)v(x)q(x)

This shows that r(x) is also in S. If it were nonzero, it could be multiplied by a
constant to get a monic element of S with lower degree than d(x), which contradicts
the choice of d(x). We can thus conclude that r(x) = 0, and consequently d(x)
divides a(x).

Similarly, one shows d(x) divides b(x). Thus d(x) is a common divisor of
a(x) and b(x). To show it is the greatest common divisor, let c(x) be any other
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common divisor of a(x) and b(x). Then c(x) divides a(x)u(x) + b(x)v(x) = d(x)
(by divisibility properties) as claimed.

Finally, we note that the set S (which we defined to be the set of polynomial
combinations of a(x)) is also the set of multiples of d(x). Since d(x) divides each
of a(x) and b(x) it will divide any polynomial combination of a(x) and b(x) by
divisibility properties. On the other hand, since d(x) is a polynomial combination
of a(x) and b(x), any multiple of d(x) is also a polynomial combination of a(x)
and b(x) and therefore in S.

The proof of the theorem can be adapted for any set of polynomials P ⊆ F [x].
One can show that the smallest degree monic polynomial that can be expressed as
a combination of the elements of P actually divides all the elements of P .

The discussion of the Euclidean algorithm for integers carries over almost ver-
batim to F [x]. We use a(x)//b(x) for the polynomial quotient and a(x)%b(x) for
the remainder of division of a(x) by b(x).

Assume deg(a(x)) ≥ deg(b(x)). Set r−1(x) = a(x) and r0(x) = b(x), and define
inductively (while rk(x) 6= 0)

qk(x) = rk−1(x)//rk(x)

rk+1(x) = rk−1(x)%rk(x), so that

rk−1(x) = rk(x)qk(x) + rk+1(x).

Rearranging these equalites by solving for rk+1(x), we get a sequence

r1(x) = r−1(x)− r0(x)q0(x) = a(x)− b(x)q0(x)

r2(x) = r0(x)− r1(x)q1(x)

r3(x) = r1(x)− r2(x)q2(x)

...

rk+1(x) = rk−1(x)− qk(x)rk(x)

...

rn+1(x) = rn−1(x)− qn(x)rn(x) = 0.

We note that deg(rk(x)) is a strictly decreasing sequence of nonnegative integers.
The process must terminate: for some n, rn+1(x) = 0. Now we make use of the
following lemma, proved using basic divisibility properties.

Lemma 1.3.4. For polynomials a(x), b(x), c(x), s(x) in F [x] that satisfy a(x) =
b(x)s(x) + c(x), we have gcd(a(x), b(x)) = gcd(b(x), c(x)).
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Let’s apply this to the sequence rk(x), letting n be minimal such that rn+1(x) =
0. We have (since rn+1(x) = 0)

gcd(a(x), b(x)) = gcd(b(x), r1(x)) = · · · = gcd(rn(x), rn+1(x)) = gcd(rn(x), 0) = rn(x)

This argument shows that the Euclidean algorithm produces the gcd of a(x) and
b(x).

Exercises 1.3.5. Use the Euclidean algorithm to express the greatest common di-
visor of these two polynomials as a polynomial combination of them.

(a) f = x4 + x2 and g = x3 + 1.

(b) f = x6 + 1 and g = x4 + x3 + x2 + 1 as elements of F2[x].

Primes, Irreducibles and Unique Factorization

Let r(x) ∈ F [x] have degree at least one. As with integers, we say r(x) is irre-
ducible when it can’t be factored in a nontrivial way: whenever r(x) = a(x)b(x)
either a(x) or b(x) is a constant (that is, in F ). We say r(x) is prime when
r(x)|a(x)b(x) implies r(x)|a(x) or r(x)|b(x).

As with integers, we have the equivalence of primality and irreducibility, which
is a key step towards proving unique factorization.

Theorem 1.3.6 (Prime-Irreducible). Any nonconstant element of F [x] is irre-
ducible if and only if it is prime.

Proof. Let r(x) ∈ F [x] be irreducible; let us show it is prime. Suppose that
p(x)|a(x)b(x) for some a(x) and b(x) in F [x]. We need to show p(x)|a(x) or
p(x)|b(x). If p(x) divides a(x) we are done, so suppose it does not divide a(x).
Since p(x) is irreducible, the GCD of a(x) and p(x) is 1. By the GCD Theorem,
there are polynomials u(x), v(x) such that

1 = a(x)u(x) + p(x)v(x)

Multiplying by b(x)

b(x) = a(x)b(x)u(x) + p(x)b(x)v(x)

Since p(x)|a(x)b(x) we have that p(x) divides the right hand side, and consequently
p(x) divides b(x). Thus we have shown that p(x) is prime.

Suppose now that p(x) is prime; we will show it is irreducible. Let p(x) =
a(x)b(x) be a factorization of p(x). We must show one of a(x) or b(x) is a constant.
Since p(x) is prime and it divides (in fact equals) the product a(x)b(x) it must
divide one of the factors. Without loss of generality, say p(x)|a(x). We then have
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deg(a(x)) ≥ deg(p(x)). On the other hand, since p(x) = a(x)b(x) we have by
additivity of degrees for a product of polynomials,

deg(p(x)) = deg(a(x)) + deg(b(x)) ≥ deg(a(x))

We conclude that deg(p(x)) = deg(a(x)) and deg(b(x)) = 0. Thus b(x) is a
constant.

Theorem 1.3.7 (Unique Factorization). Let a(x) ∈ F [x] be nonzero. There is
a nonnegative integer t, a constant u ∈ F , distinct monic irreducible polynomials
p1(x), . . . , pt(x), and positive integers e1, . . . , et such that

a(x) = u
(
p1(x)

)e1 · · · (pt(x)
)et

Each of t, pi(x), ei and u is uniquely determined, up to reordering of the pi(x)ei.

Proof. TBD

Polynomial modulus

We now extend the technique of modular arithmetic to the polynomial ring over
a field.

Let m(x) ∈ F [x] have degree d. Polynomials a(x) and b(x) are congruent
modulo m(x) when m(x) divides a(x)− b(x).

Theorem 1.3.8. Congruence modulo m(x) is an equivalence relation. The set of
polynomials of degree less than δ = deg(m(x)) is a system of representatives for
congruence modulo m(x). That is, each polynomial is congruent modulo m(x) to
its remainder when divided by m(x), which has degree less than δ.

Any constant multiple of m(x) will define the same equivalence relation as m(x)
so we usually take m(x) to be monic. We will write [a(x)]m(x) for the congruence
class of a(x) modulo m(x) whenever we need to be careful to distinguish between
a(x), otherwise we will omit the subscript if the modulus is obvious.

Theorem 1.3.9 (Arithmetic modulo m(x)). Suppose that a(x) ≡ b(x) mod m(x)
and r(x) ≡ s(x) mod m(x). Then a(x) + r(x) ≡ b(x) + s(x) mod m(x) and
a(x)r(x) = b(x)s(x) mod m(x). Thus, arithmetic on congruence classes modulo
m(x) is well-defined.

• [a(x)] + [r(x)] = [a(x) + r(x)]

• [a(x)] ∗ [r(x)] = [a(x)r(x)]
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Proof. Suppose that a(x) ≡ b(x) mod m(x) and r(x) ≡ s(x) mod m(x). We have
a(x) = b(x) + u(x)m(x) and r(x) = s(x) + v(x)m(x) for some polynomials u(x)
and v(x). Then

a(x) + r(x) = b(x) + s(x) +
(
u(x) + v(x)

)
m(x), so

a(x) + r(x) ≡ b(x) + s(x) mod m(x)

We also have

a(x)r(x) = b(x)s(x) +
(
a(x)v(x) + b(x)u(x) + u(x)v(x)m(x)

)
m(x)

so a(x)r(x) ≡ b(x)s(x) mod m(x).
This shows that no matter what element of a congruence class is used to rep-

resent a class, arithmetic operations modulo m(x) will give the same result.

We will write F [x]/m(x) for the set of equivalence classes modulo m(x), with
the operations + and ∗ as designated above.

Exercises 1.3.10.

(a) Letm(x) be an irreducible monic polynomial in F [x]. Let [a(x)] ∈ F [x]/m(x)
with a(x) not divisible by m(x). Use the GCD Theorem 1.3.3 to show there
is some r(x) ∈ F [x] such that [a(x)][r(x)] = [1].

(b) Extend this result, partially, to other F [x]/m(x). If a(x) ∈ F [x] is such
that a(x) is coprime to m(x), then there is some r(x) ∈ F [x] such that
[a(x)][r(x)] = [1].

1.4 A Roadmap for this Book

Main themes
We ahve introduced three categories of algebraic objects: groups, rings, and

fields. We have a few examples of each type. In the rest of the book we will study
some fundamental questions for each of these categories:

• What are some characteristic first examples?

• How can we construct new (potentially more complex) objects from simpler
ones?

• What types of functions are there between objects of the category (from
groups to groups, or rings to rings) that respect the architecture of that
category (the operation, identities and inverses)? These functions are called
homomorphisms.
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• When are two objects essentially the same? (When there is a bijective ho-
momorphism between them.)

• Can we break an arbitrary object in the category into constituent parts that
are easier to understand? (This is the reverse question to the one about
constructing new more complicated objects from simpler objects.)

For Groups

• Classify finite, and finitely generated groups.

• Outline the challenges and what is known about classifying all finite groups.

• Expand on the discussion of symmetry with group actions

• Apply group actions to understanding the structure of a finite group using
the Sylow theorems.

For Rings

• Explore constructions, in particular polynomial rings and rings of fractions.

• Explore generalizations of the theorems in Sections 1.1 and 1.3 to other rings,
particularly polynomial rings over a field in several indeterminates. What
can we say about unique factorization? About Division, about the GCD
theorem (more specifically, the linear combination used to prove the GCD
theorem for integers).

For Fields

• Describe the construction and the structure of all finite fields. Expanding on
the observations previously that Z/p is a field for p prime and that F [x]/m(x)
is a field when m(x) is irreducible.

• Describe number fields, these are fields that, like Q(i) are derived from the
rationals using irreducible polynomials over Q.

• Show the relationship between group theory and field theory developed by
Galois.

29



Chapter 2

Groups

2.1 Groups and Subgroups

The material in this section is a quick summary of the most fundamental properties
of groups. I have omitted some proofs because they are are fairly routine, are good
exercises for the reader, and are available from many sources. See in particular the
book of Hungerford [Hun12]. It is worthwhile reviewing the proofs as you read!

First let us recall the definition of a group.

Definition 2.1.1. A group is a set G with a binary operation ∗ and a unary
operation denoted a 7−→ a−1 satisfying the following properties.

(1) Associativity of ∗: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) Identity for ∗: There is an element in G, usually denoted e, such that e∗a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
multiplicative inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

The operation is usually called a product. So a ∗ b is the product of a and b.
One must be careful, because, in a nonabelian group, the products a ∗ b and b ∗ a
are not necessarily equal. In abelian groups the operation is often called addition
and is written with a + sign, while the identity is written as 0.

The most basic properties are contained in the following proposition. The
proofs of all of these are called “card tricks” by a friend of mine. Any algebraist
should have these up a sleeve since similar cleverness is used in other contexts.
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Proposition 2.1.2 (Basic Properties). Let G, ∗ be a group. Then

(1) The identity element is unique.

(2) The inverse of any element is unique.

(3) The cancellation law holds: a ∗ b = a ∗ c implies b = c (and similarly for
cancellation on the right).

(4) If a ∗ g = g for some g ∈ G, then a = eG.

(5) (a ∗ b)−1 = b−1 ∗ a−1.

(6) (a−1)−1 = a.

Let G be a group. When there is risk of confusion, with more than one group
under consideration, we will use ∗G for the operation on the group G and eG for
the identity element. Otherwise we will not subscript with G. Unless there is
some reason to be very clear we rarely write the group operation: g1g2 means
g1 ∗G g2. For a positive integer n, gn is shorthand for gg · · · g︸ ︷︷ ︸

n factors

and g−n is shorthand

for g−1g−1 · · · g−1︸ ︷︷ ︸
n factors

. It is straightforward to check that the usual rules for exponents

apply.
For a group in which the operation is + and the identity is 0 (in particular,

the group must be abelian), the sum g + g + · · ·+ g︸ ︷︷ ︸
n terms

is written ng. Think of this

as repeated addition, not as multiplication: the group just has one operation, and
n is an integer, not necessarily an element of the group.

The first examples come from a familiar place, the integers, as discussed in
Section 1.2.

Example 2.1.3. The integers Z form a group with operation +, identity element 0
and inversion operation a 7−→ −a. The elements 1 and −1 generate the group Z
in the sense that by applying inversion and repeated addition we can get all the
other elements of Z. This is not true for other elements.

The set of multiples of n in Z also is a group under + with identity 0. Adding
two multiples of n gives another multiple of n, and the additive inverse of a multiple
of n is also a multiple of n. We will denote this group by nZ. Later in this section
we introduce the abstract definition of a subgroup. Here nZ is a subgroup of Z.
The elements n and −n generate nZ just as 1 and −1 generate Z.

The integers modulo n, introduced in Section 1.1, also form a group under +.
We can write the elements as 0, 1, 2, . . . , n− 1, but these are really shorthand for
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congruence classes. When consider the integers modulo n as a group (ignoring
multiplication) we will write it as Zn. An interesting question is: what elements
generate Zn?

Definition 2.1.4. A single element g of a group G generates G when any element
of G is equal to gn for some n ∈ Z (or, if the operation of the group is addition,
any element is equal to ng for some n). Such a group is said to be cyclic.

Let S be a subset of a groupG. We say thatG is generated by S if any element
of G is equal to a product (with an arbitrary number of terms) of elements of S
and elements of

{
s−1 : s ∈ S

}
.

A group is t−generated if there is a subset S of G with t elements that
generates G.

Example 2.1.5. The Cartesian product Z × Z is a group under coordinatewise
addition with identity element (0, 0) and inverse operator (a, b) 7−→ (−a,−b). It
is not possible to generate all elements by repeated addition of a single element,
but this group is 2−generated.

The Cartesian product Z/m × Z/n under coordinatewise addition (and using
coordinatewise identity elements and inversion) is also a group. In certain cases it
is possible to have a single element generate all elements by repeated addition.

Exercises 2.1.6.

(a) Consider Zn for n = 2, 3, 4, 5, 6, 7. Which elements a ∈ Zn generate all of
Zn?

(b) Show that Z× Z is not generated by a single element.

(c) Experiment with some small integers m and n to find cases in which Zm×Zn
is generated by a single element and other cases in which it is not.

The following proposition elaborates on Exercise 1.1.17 concerning multiplica-
tion in Z/n. We say that an element [a] in Z/n is a unit if [a] has a multiplicative
inverse modulo n, that is, there is some [u] ∈ Zn such that [a][u] = [1].

Proposition 2.1.7. The congruence class [a] in Z/n is a unit if and only if a is
coprime to n. The units in Z/n form a group under multiplication. This group is
denoted Un.

Proof. Let n > 1 be an integer and let a ∈ Z. We first show that a is coprime to
n if and only if [a] has a multiplicative inverse modulo n. If a and n are coprime
then, by the GCD Theorem 1.1.4, there exist integers u and v such au + vn = 1.
Reducing modulo n we have [a][u] = [1]. Conversely if [a] has an inverse modulo
n, say [a][u] = [1] then au − 1 must be a multiple of n. But if au − 1 = vn then
the smallest positive linear combination of a and n is 1. By the GCD Theorem a
and n are coprime.
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Let Un be the set of elements in Z/n that have multiplicative inverses. The
identity element of Un is [1]. Clearly if [a] is in Un and [u] is such that [a][u] = [1]
then [u] is the inverse of [a] and vice-versa. If [a], [b] ∈ Un and their inverses are,
respectively, u and v, then by associativity and commutativity, ([a][b])([u][v]) =
([a][u])([b][v]) = [1][1] = [1] so ab is also invertible. Thus multiplication is an
operation on Un (it maps Un × Un to Un); there is an identity element, [1], and a
unary operation corresponding to inversion.

The groups Un are interesting because their structure is not immediately ob-
vious. The additive group Zn,+ is easy to understand; it is cyclic, generated by
[1]. Some groups Un are cyclic, but some are not. We won’t fully determine the
structure of Un until we establish the Chinese Remainder Theorem for rings (or
specifically Z/n) in Theorem ??.

Definition 2.1.8. The cardinality of a groupG, written |G| is just the cardinality
of the underlying set. It is also called the order of the group.

Many of our examples will be finite groups and we will be studying some of
the properties that go into understanding the structure of finite groups.

Example 2.1.9. Recall the definition of the dihedral group Dn, which is the sym-
metry group of a regular n-gon (1.2.4). We showed that Dn has 2n elements and
that it is 2-generated—by r, the rotation by 2π/n, and any reflection, ti. (Well,
we did this for D5, but the same argument holds).

Section 1.2 also introduced Sn, the group of all possible permutations on
{1, 2, . . . , n}. This group has cardinality n!. Composing them is just composing
functions. The inverse permutation involves flipping the two rows of the permu-
tation and then, for convenience, rearranging the columns so that the first row is
increasing order.

For π =

(
1 2 3 4 5
4 3 1 5 2

)
, the inverse is π−1 =

(
1 2 3 4 5
3 5 2 1 4

)
.

The Order of an Element

Definition 2.1.10. For g ∈ G the order of the element g is the smallest
positive integer n such that gn = e, if such an n exists. If no such n exists then g
has infinite order. We use |g| or ord(g) for the order of g.

The exponent of G is the least common multiple of the orders of the elements
of G, if such an integer exists, that is exp(G) = lcm {ord(g) : g ∈ G}. If no such
element exists one can say the exponent is infinite.
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Only the identity element of a group has order 1. Every nonzero element of
Z has infinite order. In Zn some elements have order n, but other non-identity
elements may have a different order. For any finite group there is a well defined
exponent, but an infinite group may or may not have one.

Theorem 2.1.11 (Order Theorem). Let g be an element of the group G.

(1) If g has infinite order, then elements gt for t ∈ Z are all distinct.

(2) If g has order n then

(a) gt = gs if and only if t ≡ s mod n. In particular, gt = e if and only if
n divides t.

(b) ord(gt) = n
gcd (t,n) .

Proof. Suppose gt = gs for integers s, t. Then gt−s = eG. If g has infinite order
then s− t = 0 so s = t. This proves item (1).

Suppose g has order n. For an integer t use the quotient remainder theorem to
write t = nq + r. Then gt = gnq+r = (gn)qgr = eqgr = gr. This shows claim (2a).
Now let d = gcd(t, n) and write t = da and n = db. Then a, b have no common
factor (otherwise d would not be the gcd) and we observe that b = n/gcd (t, n).
We now have (gt)b = gdab = (gn)a = e. Furthermore, if (gt)s = e then, by (2a),
n = db divides ts = das. Cancelling d and taking note of b and a being coprime
we get b divides s. This establishes (2b).

Example 2.1.12. The reflections in Dn all have order 2. The rotation by 2π/n has
order n, but some of the other rotations has order less than n. For example in D6

with r the rotation by 2π/6, r2 has order 3 and r3 has order 2.

Exercises 2.1.13. More card tricks.

(a) Suppose that every element of G has order 2. Show that G is abelian.

(b) If G has even order then G has an element of order 2. (Consider the pairing
of g with g−1).

Exercises 2.1.14. Order and commutativity.

(a) If g ∈ G has order m and h ∈ H has order n, find the order of (g, h) ∈ G×H.

(b) Suppose that a, b ∈ G commute (that is ab = ba). If ord(a) and ord(b) are
coprime find the order of ab.

(c) Let A be an abelian group with finite exponent. Show that there is some
a ∈ A such that ord(a) = exp(A).
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Subgroups

A key area of investigation in many mathematical subjects is the subsets of a given
object that have useful structure. In this section we treat subsets of a group that
are themselves groups.

Definition 2.1.15. A nonempty subset H of a group G is a subgroup, when H
is a group using the operation ∗G on G. This means that for any h ∈ H the inverse
h−1 must also be in H and for h, h′ ∈ H, the product h ∗G h′ must also be an
element of H. We will say H is closed under inversion and multiplication.
We will write H ≤ G when H is a subgroup of G (as opposed to H ⊆ G when H
is just a subset), and H < G when H is a proper subgroup (that is H 6= G).

The following proposition is a sanity check on our definition of subgroup: the
identity element and inversion are the same for the subgroup as for the group.

Proposition 2.1.16. If K is a subgroup of G then eK = eG and the inversion
operation is the same on K as it is on G.

Proof. If K is a subgroup of G then it must have an identity element. For any
k ∈ K, we have (using ∗K = ∗G) that eK ∗K k = eK ∗G k = k Proposition 2.1.2 (4)
shows that it must be the case that eK = eG. (If something acts like the identity
it is the identity!)

Let k ∈ K and let k−1 be its inverse in G. This k−1 is also the inverse of k in
the subgroup K because k ∗ k−1 = eG = eK .

(Thank goodness for both of these facts.)

Proposition 2.1.17 (Subgroup Properties). If K is a nonempty subset of G that
is closed under inversion and closed under multiplication in G then K is a subgroup
of G (i.e. it also contains eG).

If K is a nonempty subset of G such that h ∗G k−1 ∈ K for all h, k ∈ K then
K is a subgroup of G.

Proof. Since K is nonempty, it contains some element k. Since K is closed under
inversion, k−1 ∈ K. Since K is closed under multiplication, k ∗G k−1 = eG ∈ K.
Thus K satisfies the definition of a group since it has associativity (immediate since
∗K is the restriction of ∗G), an identity element, and inverses (by assumption).

Suppose K is a nonempty subset of G such that h ∗G k−1 ∈ K for all h, k ∈ K.
For any k ∈ K, setting h = k gives k ∗G k−1 = eG ∈ K. Letting h = eG gives
eG ∗ k−1 = k−1 ∈ K, so K is closed under inversion. Now for any h, k ∈ K we
know k−1 ∈ K, so h ∗G (k−1)−1 = h ∗G k ∈ K. This shows K is closed under
multiplication.
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When proving that a particular subset of a group is a subgroup one can either
show the set is closed under inversion and under multiplication, or use the second
property of the theorem. I like the clarity of proving closure under each operation.

Exercises 2.1.18.

(a) Let G be a group and g an arbitrary element of G. Show that
{
gi : i ∈ Z

}
is a subgroup of G. This group is called the cyclic subgroup generated
by g and is written 〈g〉.

(b) Let G be a group. Show that the set Z(G) = {a ∈ G : ag = ga for all g ∈ G}
is an abelian subgroup of G. It is called the center of G.

(c) Let H and K be subgroups of G. Show that their intersection is also a
subgroup of G.

Note that there is consistency between the order of an element and the order
of the subgroup it generates. If g ∈ G has order n then the set of powers of g
is
{
g0 = eG, g, g

2, . . . , gn−1
}

(any other power of g is one of these). This set is a
subgroup of G of order n. If g ∈ G has infinite order then it generates a cyclic
subgroup that is infinite. (It is not really cycling in the infinite case, but that’s
the term used!)

Example 2.1.19. As was discussed in Section 1.2, the integers, Z, the rational
numbers, Q, the real numbers, R, and the complex numbers, C, are all abelian
groups under addition. We sometimes write Z,+ (for example) to emphasize that
we are are ignoring multiplication, and are just considering the additive properties
of Z. Clearly we have a sequence of subgroups.

Z < Q < R < C

Exercises 2.1.20. Some subgroups of abelian groups. Let A,+ be an abelian group
and let m be an integer.

(a) Let mA = {ma : a ∈ A}. Show that mA is a subgroup of A.

(b) Let A[m] = {a ∈ A : ma = 0}. Show that A[m] is a subgroup of A.

(c) Give an example in which mA∩A[m] is trivial (just 0) and given an example
in which it is not trivial. (Try Zn for a few choices of n.)

Example 2.1.21. We showed in Section 1.2 that D5 may be identified with a sub-
group of S5. The discussion can be generalized to show Dn identified as a subgroup
Sn for any n ≥ 3.

The permutation group S4 may be also seen as contained in S5; it is just the set
of all permutations in S5 that take 5 to 5 (we say these “fix” 5). There are other
subgroups that have the exact same structure as S4. For example the set of all
permutations in S5 that fix 3. These subgroups are all isomorphic (see Section 2.4).
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The Lattice of Subgroups

Consider a fixed group G and let S be the set of all subgroups of G. For small
groups, it is often illuminating to draw a diagram showing all the subgroups and
the containment relationships among them. There is no simple and efficient process
for this in general, but there are some useful heuristics for small examples. One is
to find the extremal case of subgroups.

Definition 2.1.22. Let G be a group. A proper subgroup M of G is maximal
when there is no subgroup H of G satisfying M < H < G. Similarly, a nontrivial
subgroup M of G is minimal when there is no subgroup H of G satisfying {eG} <
H < M .

For any group G a single element a ∈ G generates a subgroup 〈a〉, which we
call a cyclic subgroup. So any minimal subgroup must be cyclic. This suggests
a general approach to work up from the trivial subgroup {eG} to construct the
lattice of subgroups.

(1) Find all subgroups generated by 1 element.

(2) Find all subgroups generated by 2 elements by adding an new element to the
1-generated subgroups.

(3) See if there are subgroups that require 3 generators by adding an element to
the 2-element subgroups.

Note that there are usually several ways to generate a particular subgroup.
Here are some examples.

〈(0, 0)〉

〈(1, 0)〉 〈(0, 1)〉〈(1, 1)〉

Z2 × Z2

Figure 2.1: The lattice diagram for Z2 × Z2.

Example 2.1.23. The lattice of subgroups of Z is infinite, but we can get some
sense for its structure. We have shown that for an integer n, the multiples of n,
nZ, for a subgroup of Z. The integers n and −n generate the same group, so
we may restrict our attention to nonnegative integers. I claim these are the only
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〈(0, 0)〉

〈(1, 0)〉 〈(0, 1)〉

Z2 × Z3

Figure 2.2: The lattice diagram for Z2 × Z3.

〈0〉

〈2〉

Z4

Figure 2.3: The lattice diagram for Z4.

subgroups of Z and that the subgroups for distinct n ∈ Z are unequal. Suppose
A is a subgroup of Z. If A has no positive elements then, since it is closed under
(additive) inverses it must also have no negative elements, and A = {0} = 0Z.
Suppose A does have positive elements, and let n be the smallest positive element
of A (we are using the Well-Ordering Principle). Let a be another element of A.
By the Quotient-Remainder Theorem a = qn + r for some 0 ≤ r < n. Since a
and qn are both in A, a− qn = r ∈ A. By assumption, n is the smallest positive
element of A, so r must be 0. Thus every element of A is a multiple of n, and we
have shown A = nZ.

The lattice of subgroups of Z simply reflects divisibility properties: nZ ≤ dZ if
and only if d | n. The maximal subgroups of Z are generated by prime numbers.
A prime p has no divisors except ±p and ±1 so the only subgroup of Z containing
pZ is Z itself. There are no minimal subgroups of Z because for any n > 0 there
are (infinitely many) subgroups such as 2nZ, 3nZ, 4nZ, that are proper subgroups
of nZ and are not equal to {0}.
Exercises 2.1.24. Lattice Diagrams for Groups

(a) Draw the subgroup lattice diagram for Z45.

(b) Draw the subgroup lattice diagram for Z60.

(c) Draw the subgroup lattice diagram for Z2 × Z4.

(d) Draw the subgroup lattice diagram for Z3 × Z4.
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〈(
1 2 3
1 2 3

)〉

〈(
1 2 3
2 1 3

)〉〈(
1 2 3
3 2 1

)〉 〈(
1 2 3
1 3 2

)〉
〈(

1 2 3
2 3 1

)〉S3

Figure 2.4: The lattice diagram for S3.

(e) Find all subgroups of Z4×Z4. Describe the logic of your process for finding
them. Present them in an organized fashion. Draw the lattice if you can.

2.2 Group Homomorphisms

In any field of algebra a key aspect of the field is to identify the functions that are
appropriate to study. These functions are typically called homomorphisms (from
classical languages: hom meaning “same” and morph “shape”) because they relate
to the algebraic structures on which they act.

Definition 2.2.1. Let G and H be groups. A function ϕ : G −→ H is a homo-
morphism when

(1) ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2) for all g1, g2 ∈ G, and

(2) ϕ(eG) = eH , and

(3) ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

I like to speak informally about a homomorphism as a function that respects
structure: A homomorphism of groups “respects” the property of the identity
element, multiplication, and inversion.

It is fairly easy to show that the first item in the definition of homomorphism
implies the other two. This result and another important result are contained in
the following proposition.

Proposition 2.2.2 (Homomorphisms). Let G,H,K be groups.
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If ϕ : G −→ H is a function such that ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2) then ϕ is
a group homomorphism.

If ϕ : G −→ H and θ : H −→ K are group homomorphisms then the composi-
tion θ ◦ ϕ is also a group homomorphism.

Exercises 2.2.3. Prove the proposition.

(a) Assuming that ϕ respects multiplication, show that it also takes the identity
of G to the identity of H (use eG ∗ eG = eG) and that it respects inversion
(use gg−1 = eG).

(b) Prove that the composition of homomorphisms is a homomorphism.

The simplest type of a homomorphism is the inclusion of a subgroup H of
G into G. That is, when H < G, then there is a function H −→ G that takes
elements of H to themselves (now thought of as elements of G).

Proposition 2.2.4. Let g be an element of a group G. There is homomorphism

ϕ : Z −→ G

t 7−→ gt

When g ∈ G has infinite order, this homomorphism is injective.
When g ∈ G has order n, the function below is an injective homomorphism.

ϕ : Zn −→ G

t 7−→ gt

Proof. Let g be an element of a group G. Consider the function Z −→ G taking
t to gt. The function is a homomorphism because for s, t ∈ Z, s + t maps to
gs+t = gs ∗ gt and this is the product of the images of s and t.

Now assume that g has infinite order. Suppose that gs = gt. Then gs−t = eG.
Since g has infinite order s− t = 0, so s = t. This proves injectivity.

The proof for g of finite order is similar.

Proposition 2.2.5. Let G −→ H be a homomorphism. For any subgroup G′ of
G, the image of G′, which we write ϕ(G′), is a subgroup of H.

Proof. We need only show that the image is closed under inversion and multipli-
cation. Consider an element of ϕ(G′). We may write it as ϕ(g) for some g ∈ G′.
By the properties of a homomorphism

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(eG) = eH
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This shows that the inverse of ϕ(g) is ϕ(g−1) and since G′ is a subgroup of G,

g−1 ∈ G′, and we can conclude that
(
ϕ(g)

)−1 ∈ ϕ(G′).
Consider two elements of ϕ(G′), which we may write as ϕ(g1) and ϕ(g2) for

g1, g2 ∈ G′. Their product is ϕ(g1)ϕ(g2) = ϕ(g1g2), and this is in ϕ(G′) since g1g2 ∈
G′. We have shown that ϕ(G) is closed under inversion and under multiplication
so it is a subgroup of G.

The Kernel of a Homomorphism

Definition 2.2.6. Let ϕ : G −→ H be a homomorphism. The kernel of ϕ is the
set of elements that map to the identity in H, that is

ker(ϕ) = ϕ−1(eH) = {g ∈ G : ϕ(g) = eH} .

Proposition 2.2.7. Let ϕ : G −→ H be a homomorphism. The kernel of ϕ is a
subgroup of G. Furthermore, for any a ∈ ker(ϕ) and any g ∈ G, gag−1 ∈ ker(ϕ).

Proof. By the definition of homomorphism eG ∈ ker(ϕ). Suppose a ∈ ker(ϕ). We
have

eH = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1) = eHϕ(a−1) = ϕ(a−1)

So a−1 is also in ker(ϕ). If b is another element in ker(ϕ) then ϕ(ab) = ϕ(a)ϕ(b) =
eHeH = eH . Thus ker(ϕ) is closed under inversion and multiplication, so it is a
subgroup of G. The final claim is a similar computation.

ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g−1) = ϕ(g)eHϕ(g−1)

= ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH

The kernel of a homomorphism and the property described in the last sentence
of the proposition are important concepts, as we will see in Section 2.7 Here is
another important aspect of the kernel, it gives a simple test for injectivity. Recall
that to test if a function f : A −→ S is injective we show that for a, b ∈ A,
f(a) = f(b) implies a = b.

Proposition 2.2.8. A homomorphism ϕ : G −→ is injective if and only if the
kernel is trivial, ker(ϕ) = {eG}.

Proof. For any homomorphism ϕ(eG) = eH , so injectivity forces ker(ϕ) = {eG}.
Suppose that the only element of ker(ϕ) is eG and that ϕ(a) = ϕ(b) for some a, b ∈
G. Then ϕ(ab−1) = ϕ(a)ϕ(b−1) = ϕ(a)(ϕ(b))−1 = eH . This forces ab−1 = eG, and
multiplying on the right by b we get a = b. Since ϕ is injective.
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Isomorphisms

A homomorphism ϕ that is also a bijection (one-to-one and onto) is called an
isomorphism. When there exists an isomorphism ϕ : G −→ H we say G and
H are isomorphic and write G ∼= H. The following proposition shows that the
relation of being isomorphic satisfies symmetry and transitivity so it determines
an equivalence relation on any set of groups.

Proposition 2.2.9 (Isomorphisms). If ϕ is an isomorphism of groups, then the
inverse function ϕ−1 is also an isomorphism of groups.

If ϕ : G −→ H and θ : H −→ K are group isomomorphisms then the composi-
tion θ ◦ ϕ is also a group isomorphism.

On any set of groups G, the relation of being isomorphic is an equivalence
relation.

Proof. Let ϕ : G −→ H be an isomorphism of groups. By definition, ϕ is both
injective and surjective, so there is a well defined inverse function, ϕ−1. We must
show that ϕ−1 is a homomorphism.

Let h1 and h2 be two elements of h. Since ϕ is surjective there are two elements
g1 and g2 such that ϕ(g1) = h1 and ϕ(g2) = h2. Since ϕ is injective these two
elements are uniquely defined. We now show that ϕ−1 respects products, which is
enough to show it is a homomorphism.

ϕ−1(h1h2) = ϕ−1 (ϕ(g1)ϕ(g2))

= ϕ−1 (ϕ(g1g2)) since ϕ is a homomorphism

= g1g2 since ϕ and ϕ−1 are inverse functions

= ϕ−1(h1)ϕ
−1(h2)

The composition of two bijections is a bijection, and by Proposition 2.2.5 we
know that the composition of homomorphisms is a homomorphism. Thus the
composition of two isomorphisms is an isomorphism.

Clearly any group is isomorphic to itself under the identity map. The first part
of this proposition shows that if G is isomorphic to H then H is also isomorphic
to G. The second part establishes transitivity.

If there is an isomorphism between groups G and H then G and H have the
same algebraic structure, so we consider them equivalent.

Exercises 2.2.10.

(a) Show that for each a ∈ Zn there is a unique homomorphism
ϕa : Zn −→ Zn such that ϕa(1) = a.
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(b) Under what conditions on a is ϕa an isomorphism?

(c) Identify all subgroups of Zn.

Exercises 2.2.11.

(a) Show that if d | n then there is a unique homomorphism ϕ from Zn to Zd
that takes 1 (in Zn) to 1 (in Zd). [Show that respecting the operation of
addition forces a unique choice for ϕ(a). Show also that this does give a
homomorphism.]

(b) Show that ϕ is also surjective.

(c) Show that if d does not divide n then there is no homomorphism Zn to Zd
that takes 1 (in Zn) to 1 (in Zd). [Try to define it and run into a roadblock.]

Exercises 2.2.12.

(a) Show that there is an injective homomorphism from Zn into Dn taking 1 to
rotation by 2π/n.

(b) How many injective homomorphisms are there from Zn into Dn?

(c) Identify all subgroups ofDn for n = 3, 4, 5, 6. Draw a lattice diagram showing
containment of subgroups.

Exercises 2.2.13. A Perverse Group

(a) Show that Z is a group under the operation � defined by a�b = a + b − 2.
(What is the identity element? What is the inverse of an element a?)

(b) Find an isomorphism from Z,+ to Z,�.

Exercises 2.2.14. Prove the following results about the relationship between the
order of an element and the order of its image under a homomorphism.

(a) If ϕ : G −→ H is a homomorphism, then ord(ϕ(g)) divides ord(g).

(b) If ϕ : G −→ H is an isomorphism, then ord(ϕ(g)) = ord(g).

The previous exercises give important restrictions on homomorphisms. If you
want to create a homomorphism from G to H, each element g in G must go to an
element of H that has order dividing ord(g).

Exercises 2.2.15.

(a) Show that there is a nontrivial homomorphism from D3 to Z2 but that any
homomorphism from D3 to Z3 is trivial.

2.3 Some Constructions of Groups

In this section we show three ways to construct new groups from ones that we
already have. All three have been touched on briefly; we give more detail here.
The first construction really has two aspects, given some subgroups of a group
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we can form the intersection of the subgroups and also the join of the subgroups.
More broadly, given a subset of a group we can define the subgroup generated
by the subset. The second construction is the direct product of groups. The
idea is simple (and was illustrated in the first examples of groups that we gave).
Given two groups, form the Cartesian product as sets, and apply componentwise
operations to get a new group. The construction yields in a natural way two types
of homomorphisms that are important despite their simplicity. The direct product
can also be applied to several groups not just two. Finally, for a given group G the
isomorphisms of G to itself have a group structure that is useful in understanding
the properties of G.

Intersections and the Join of Subgroups

Proposition 2.3.1. Let H1, . . . ,Ht be subgroups of G. The intersection
⋂t
i=1Hi

is a subgroup of G.
More generally, if H is a set of subgroups of G then

⋂
H∈HH is a subgroup of

G.

Proof. Suppose h and h′ are in
⋂
H∈HH. Since each H ∈ H is a subgroup of G,

h′h−1 ∈ H for each H ∈ H. Thus h′h−1 ∈
⋂
H∈HH, and Proposition 2.1.17 shows⋂

H∈HH is a subgroup of G.

Let S be an arbitrary subset of a group G. Let H be the set of all subgroups of
G containing S. Then

⋂
H∈HH is a subgroup of G, and it contains S, since each

H ∈ H contains S. Furthermore, any subgroup K of G containing S is in H so⋂
H∈HH ⊆ K. This argument justifies the following definition.

Definition 2.3.2. Let G be a group and let S be a subset of G. By 〈S〉 we mean
the smallest subgroup of G containing S. It is the intersection of all subgroups
of G containing S. We say 〈S〉 is the subgroup of G generated by S.

If H and K are subgroups of G their join, written H ∨K, is 〈H ∪K〉.

One interesting problem is to find minimal size sets that generate a group. For
example, the elements 1 and −1 both generate Z. The element 1 generates Zn as
does any a ∈ Zn that is coprime to n. (Exercise 2.1.6.)

The Direct Product

Definition 2.3.3. Let G and H be groups. The Cartesian product G×H, along
with the unary operation (of inversion) and the binary operation (of multiplication)
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below form the direct product of G and H.

(g, h)−1 = (g−1, h−1)

(g1, h1) ∗G×H (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

The identity element is of course (eG, eH).

The following proposition shows that the direct product is in fact a group and
gives other important properties. None of the following are surprising and they
are routine to prove.

Theorem 2.3.4 (Direct Product). Let G and H be groups.

(1) The above definition does, indeed, make G×H a group.

(2) The associative law for the product of several groups holds: G1×(G2×G3) ∼=
(G1 ×G2)×G3.

(3) G×H is abelian if and only if G and H are abelian.

(4) If G′ is a subgroup of G and H ′ is a subgroup of H then G′×H ′ is a subgroup
of G×H. In particular G× {eH} and {eG} ×H are subgroups of G×H.

(5) There is an injective homomorphism iG : G −→ G × H taking g to (g, eH)
(and similarly iH : H −→ G×H).

(6) The projection maps pG : G×H −→ G and pH : G×H −→ H are surjective
homomorphisms.

(7) The construction and the observations above can be generalized to the direct
product of any set of groups {Gi : i ∈ I} indexed by a finite set I. (It extends
to infinite index sets I with some modification due to subtle issues.)

Notice that the kernel of the homomorphism pG is {(eG, h) : h ∈ H} and this
is exactly the image of the homomorphism iH . Similarly ker(pH) = im(iG).

Exercises 2.3.5.

(a) Not all subgroups of G × H are direct products of subgroups of G and H.
Illustrate with some examples: Z2 × Z2, Z4 × Z4.

The following result is more subtle and it turns out to be a powerful idea.

Proposition 2.3.6 (Universal Property of the Product). Let G,H, and T be
groups, and let ϕ : T −→ G and ψ : T −→ H be homomorphisms. The function
α : T −→ G×H defined by t 7−→ (ϕ(t), ψ(t)) is a homomorphism. It is the unique
homomorphism such that pG ◦ α = ϕ and pH ◦ α = ψ.
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Proof. Note first that, by construction, pG ◦ α = ϕ and pH ◦ α = ψ. Furthermore,
there is no other choice for the definition of α that satisfies these two requirements.

We have to show that α respects inversion and multiplication. Let t ∈ T .
We have to show that α(t−1) is the inverse of α(t). The subscript on ∗ that we
sometimes use to show the group being used is omitted in the following derivation,
but it is worthwhile to identify it while reading.

α(t) ∗ α(t−1) =
(
ϕ(t), ψ(t)

)
∗
(
ϕ(t−1), ψ(t−1)

)
=
(
ϕ(t) ∗ ϕ(t−1), ψ(t) ∗ ψ(t−1)

)
=
(
ϕ(t ∗ t−1), ψ(t ∗ t−1)

)
= (eH , eK)

This proves that α(t−1) is the inverse of α(t). Similarly for t1, t2 ∈ T ,

α(t1) ∗ α(t2) =
(
ϕ(t1), ψ(t1)

)
∗
(
ϕ(t2), ψ(t2)

)
=
(
ϕ(t1) ∗ ϕ(t2), ψ(t1) ∗ ψ(t2)

)
=
(
ϕ(t1 ∗ t2), ψ(t1 ∗ t2)

)
= α(t1 ∗ t2)

This shows α respects products.

As a corollary of Proposition 2.3.6 we get

Corollary 2.3.7. Let m and n be positive integers. There is a unique homo-
morphism Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
. When m and n are

coprime this homomorphism is an isomorphism.

Proof. Exercise 2.2.11 shows that there is a unique homomorphism taking [1]mn to
[1]m and a unique homomorphism taking [1]mn to [1]n. The previous proposition
says this pair of homomorphisms extends in a unique way to a homomorphism
α : Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
.

When m and n are coprime the kernel of α is trivial because if α([b]mn) is(
[0]m, [0]n

)
then b must be divisible by both m and n. Since m and n are coprime

b is divisible by mn, so [b]mn = [0]mn.

The previous corollary is closely related to the Chinese Remainder Theorem
(which says a bit more than our corollary does). The following exercise broadens
the perspective
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Exercises 2.3.8. We have shown that there is a homomorphism Zn −→ Zd taking 1
in Zn to 1 in Zd if and only if d | n. Suppose c and d both divide n. Proposition 2.3.6
says that the two homomorphisms Zn −→ Zd (taking [1]n to [1]d]) and Zn −→ Zc
(taking [1]n to [1]c]) give rise to a homomorphism Zn −→ Zc × Zd.

(a) What is the kernel of the homomorphism Zn −→ Zc × Zd?
(b) Under what conditions is it an isomorphism?

(c) Illustrate with n = 8 and c = d = 4. What is the image?

(d) Illustrate with n = 18 and c = 6 and d = 9. What is the image?

Automorphism Groups

Proposition 2.3.9 (Automorphisms). Let G be a group. The set of all isomor-
phisms from G to itself is a group. This new group is called Aut(G), the group of
automorphisms of G.

Proof. The identity map idG is clearly an automorphism of G, so there is at least
one automorphism of G. The composition of idG with any automorphism ϕ : G −→
G is ϕ, since the identity map takes each element to itself. Proposition 2.2.9 shows
that the inverse of an isomorphism is an isomorphism and the composition of two
isomorphisms is an isomorphism. Thus Aut(G) is a subgroup of the group of
bijections of G.

Exercises 2.3.10.

(a) Show that Aut(Z) has two elements and Aut(Z) ∼= Z2.

(b) Compute Aut(Zn) for n = 2, 3, 4, 5, 6, 7. [In each case the answer is a cyclic
group.]

(c) Show that Aut(Z8) is not cyclic.

2.4 Permutation Groups

In this section we delve more deeply into the structure of the symmetric group
Sn, the group of permutations of {1, . . . , n}. The number of elements in Sn is n!.
Informally, we may justify this claim by noting that there are n possible images
for the number 1. Once the image for 1 is chosen, there are n − 1 choices for the
number 2. Continuing in this manner we count n! bijections from {1, . . . , n} to
itself. One can give a more formal inductive proof.

We will sometimes write an element π of Sn in tabular form with i in the top
row and π(i) in the bottom row.

Exercises 2.4.1.
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(a) Here are two elements of S5:

π =

(
1 2 3 4 5
3 5 1 2 4

)
and σ =

(
1 2 3 4 5
1 3 4 2 5

)
.

(b) Compute the inverse of each.

(c) Compute the products πσ and σπ, using the usual convention for composi-
tions: (πσ)(i) = π(σ(i)). You should see that the results are not equal.

Example 2.4.2. Let n = 3, and enumerate the vertices of a triangle clockwise as
1, 2, 3. Each element of D3 gives rise to a permutation of {1, 2, 3}.

Let r be rotation clockwise by 2π/3. Then

r =

(
1 2 3
2 3 1

)
and r2 =

(
1 2 3
3 1 2

)
.

There are three reflections, each fixes one element of {1, 2, 3} and transposes the
other two

u1 =

(
1 2 3
1 3 2

)
u2 =

(
1 2 3
3 2 1

)
u3 =

(
1 2 3
2 1 3

)
.

This exhausts all permutations of {1, 2, 3} so by enumerating the vertices of the
triangle we have established a bijection between D3 and S3. This is actually an
isomorphism since the operation for D3 is composition, as it is for Sn.

Exercises 2.4.3.

(a) How many ways are there to embed Z4 in S4?

(b) How many ways are there to embed D4 in S4?

Cycle Decomposition

Definition 2.4.4. Let a1, a2, . . . , at be distinct elements of {1, . . . , n}. We use the
notation (a1, a2, . . . , at) to define an element of Sn called a t-cycle. This permu-
tation takes ai to ai+1, for i = 1, 2, 3 . . . , t− 1 and it takes at to a1. Every element
of {1, . . . , n} \ {a1, . . . , at} is fixed (i.e. taken to itself) by the cycle (a1, a2, . . . , at).
We will call the set {a1, . . . , at} the support of the cycle (a1, a2, . . . , at).

A two-cycle is often called a transposition.
Two cycles are called disjoint when their supports are disjoint sets.
When we use cycle notation we will use id for the identity permutation.

Exercises 2.4.5.

(a) Show that disjoint cycles commute.
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(b) Suppose σ is a t-cycle. For which r is σr a t-cycle? What can happen for
other r?

(c) Show that for a t-cycle σ, there is an injective homomorphism Zr −→ Sn
taking 1 to σ.

Definition 2.4.6. Let π ∈ Sn. The orbit of a ∈ {1, . . . , n} under π is the set{
πi(a) : i ∈ Z

}
.

Let π ∈ Sn. A cycle decomposition for π is a product of disjoint cycles that
is equal to π.

We want to show every permutation has a unique cycle decomposition. The
first step is this lemma.

Lemma 2.4.7. Let π ∈ Sn. Any two orbits of π are either equal or disjoint.

Proof. Suppose two orbits of π ∈ Sn are not disjoint. We will show they are equal.
Let a, b, c be distinct elements of {1, 2, . . . , n}. Suppose that b is in the orbit of a
and also in the orbit of c. We will show that orb(a) = orb(c). We have assumed
πi(a) = b and πj(c) = b for some i, j ∈ Z. Then πi(a) = πj(c) so πi−j(a) = c
so c is in orb(a). Moreover, anything in the orbit of c must be in the orbit of
a since πk(c) = πk+i−j(a). The reverse is also true by the same reasoning, so
orb(a) = orb(c).

Proposition 2.4.8. Every permutation in Sn has a cycle decomposition, and it is
unique up to reordering the factors.

Proof. This is just a sketch that should make sense, and one could formalize it
using induction. Take an element a ∈ {1, . . . , n}. Since {1, . . . , n} is finite, there
is some pair of distinct positive integers such that πi(a) = πj(a). Notice that
πi(a) = πj(a) implies πi−1(a) = πj−1(a) and so forth until πi−j(a) = a. Thus,
there is some minimal positive integer, call it d, such that πd(a) = a. It should
be clear that, for m ∈ Z, πm(a) = πr(a) for r the remainder when m is divided
by d. Now consider the cycle (a, π(a), . . . , πr−1(a)). The orbit of a is this set
of elements, orb(a) =

{
a, π(a), . . . , πr−1(a)

}
. Consequently, π can be written as

the product of (a, π(a), . . . , πr−1(a)) and some other permutation that fixes each
element in orb(a). Now choose an element of {1, . . . , n} \ orb(a) and look at its
orbit; continue.

Definition 2.4.9. We will call the list of cycle lengths, in decreasing order, the
signature of the permutation.

We will include one-cycles in the definition of the cycle decomposition, although
we will not write them unless it is needed for clarity. For example, the permutation
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π in S5 from Exercise 2.4.1 has cycle decomposition π = (1, 3)(2, 5, 4) and signature
3, 2. If we consider π as an element of S6, we have π = (1, 3)(2, 5, 4)(6) and the
signature is 3, 2, 1.

Exercises 2.4.10. Prove the following results about the signature of a permutation.

(a) For π ∈ Sn, the sum of the signature list is n.

(b) If π = σ1σ2 · · ·σr is a cycle decomposition, then πk = σk1σ
k
2 · · ·σkr . Under

what conditions is this also a cycle decomposition in the sense that each σki
is a cycle?

(c) The order of π ∈ Sn is the lcm of the signature list.

Exercises 2.4.11. A sanity check: For n = 4 and n = 5 do the following to check
that all elements of Sn are accounted for.

(a) Identify all possible signatures for elements of Sn and find the order of an
element with the given signature.

(b) What is the exponent of Sn?

(c) For each possible signature in Sn, count how many elements have that sig-
nature. Then check that you get the correct total number of elements in
Sn.

Transpositions and the Alternating Group

There is another factorization that is important.

Proposition 2.4.12. Every permutation can be written as a product of transpo-
sitions.

Proof. Since every permutation is a product of cycles, it is enough to show that
every cycle is a product of transpositions. This is shown by verifying that

(a1, a2, . . . , at) = (a1, a2) ∗ (a2, a3) ∗ · · · ∗ (at−2, at−1) ∗ (at−1, at)

Recall that we treat permutations are functions and we apply the rightmost per-
mutation first. One can see that at gets mapped to at−1 then at−2 and so forth,
until the final transposition is applied and takes a2 (the image of at at this point)
to a1. Similar arguments apply to the other ai.

We may interpret the previous result as saying that Sn is generated by trans-
positions. That is somewhat good news: there are n! elements of Sn but only

(
n
2

)
transpositions. Thus n(n− 1)/2 elements of Sn are enough to generate Sn. In fact
we can do much better!

Exercises 2.4.13. Generators for Sn.
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(a) Show that Sn is generated by the n − 1 elements (1, k) for k = 2, . . . , n.
[Show that you can get an arbitrary transposition by conjugating (1, k) by
some (1, j), see Definition 2.6.9.]

(b) Show that Sn is generated by 2 elements: (1, 2) and (1, 2, 3, . . . , n − 1, n).
[Show that you can get all (1, k) from these two using conjugation and then
apply the previous exercise.]

Exercises 2.4.14.

(a) Let a, b, c be distinct elements of {1, . . . , n}. Write down all possible factor-
izations of the 3-cycle (a, b, c) as a product of 2 transpositions.

(b) Let a be an element of {1, . . . , n}. Let τ1, τ2 be transpositions in Sn with
τ1 6= τ2. Show that there exist transpositions σ1, σ2 ∈ Sn such that σ1σ2 =
τ1τ2 and a is not in the support of σ2. [You will need to consider a few
different cases depending on whether a is in the support of τ1 or τ2.]

We know from the previous proposition that a permutation can be written
as a product of transpositions. This “factorization” is not unique, for example
id = (1, 2)(1, 2) = (1, 3)(1, 3), but the next proposition shows that the parity of
the factorization is.

Proposition 2.4.15. The identity element of Sn cannot be written as the product
of an odd number of transpositions.

Consequently, any permutation can be written as a product of an even number
of transpositions, or an odd number of transpositions, but not both.

Proof. We will show that if id is the product of n transpositions then it is the
product of n−2 transpositions. Consequently, if it is the product of an odd number
of transpositions, inductively we could show that id is a single transposition. This
is clearly false.

Suppose that id = τ1 · · · τn with τi = (b2i−1, b2i). The bi are not necessarily
distinct, except b2i−1 6= b2i so that τi is indeed a transposition. Let a = b1. Let
k be the largest integer such that a is in the support of τk (so either b2k−1 or b2k
is equal to a). Note that k 6= 1 because if a was only in the support of τ1 then
τ1 · · · τn(a) = τ1(b1) = b2 6= a and the factorization would not be the identity.

Using the previous exercise we can rewrite the factorization of the identity
replacing τk−1τk with σk−1σk in which a is not in the support of σk (the indexing
of k − 1 and k on σk−1 and σk is just for notational convenience). We have a new
factorization of id with n terms, but now, only the transpositions τ1, . . . , τk−2 and
σk−1 can have a in the support. If τk−2 = σk−1 we can cancel and get a shorter
factorization of the identity using n− 2 transpositions, as claimed. Otherwise we
repeat the process: find the largest index such that the transposition with that
index has a in the support; use the exercise to move a into a lower index term;
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cancel if possible; if not repeat. Eventually we either get a cancelation, or we arrive
at a factorization τ1σ2 · · · τk+1τk+2 · · · τn in which only the first two transpositions
τ1 and σ2 have a in their support. Then τ1σ2(a) = id(a) = a. This is possible
only if τ1 = σ2. Thus we may cancel and get id equal to the product of n − 2
transpositions as claimed.

For the second part, suppose that π is the product of transpositions in two
ways: π = σ1σ2 . . . σm = θ1θ2 . . . θk. Then id = σ1σ2 . . . σmθ

−1
1 θ−12 . . . θ−1k . Thus

m+k must be even, and this implies that m and k must have the same parity.

We now have an important and easy consequence.

Proposition 2.4.16. The set of even parity permutations forms a subgroup of Sn.
This is called the alternating group and is denoted An.

Furthermore, there is a homomorphism from Sn to Z2 whose kernel is An.

Exercises 2.4.17.

(a) Suppose that σ is a k-cycle and τ is an m-cycle and there is exactly one
element of {1, . . . , n} that is in the support of both σ and τ . Show that στ
is a (k +m− 1)-cycle.

(b) Show that the product of two disjoint transpositions can also be written as
the product of two 3-cycles.

(c) Use part (a) (with k = m = 2) and part (b) to prove that An is generated
by 3 cycles.

(d) Compute (1, 2, a)(1, b, 2) for a, b distinct and not equal to 1 or 2. Use the
result as motivation to show that the 3-cycles of the form (1, 2, a) generate
An for n ≥ 4.

Exercises 2.4.18.

(a) Show that there is a homomorphism from Sn to Z2 whose kernel is An.

(b) Find all subgroups of A4. Draw a diagram of the subgroup lattice.

(c) What is the intersection of A4 and D4?

Cayley’s Theorem

For any set T , the set of bijections from T to itself forms a group under composition
with the indentity map, id(t) = t, acting as identity element and f mapping to the
inverse of a function f as the operation of inversion. In a manner similar to our
notation for permutations of {1, . . . , n}, we will write the group of bijections of an
arbitrary set T as ST . The elements of ST will also be called permutations of T .

For a group G, we can forget that G is a group and just look at arbitrary
bijections (set maps) from G to itself, that is SG. The next theorem shows there
is an injective homomorphism from G to SG.
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Theorem 2.4.19. Any group G is isomorphic to a subgroup of SG, the group of
(set) bijections of G to itself. If |G| = n there is an embedding of G in Sn.

Proof. For each a ∈ G, left multiplication by a maps elements of G to elements
of G. Let us call this map λa : g −→ ag. We can see that λa is a permutation
of G as follows. For any g ∈ G, λa(a

−1g) = a(a−1g) = g, so a−1g is a preimage
for g. Since g was arbitrary, λa is surjective. We also have λa is injective because
λa(g) = λa(g

′) implies ag = ag′, which by cancellation in G gives g = g′.
Define λ : G −→ SG by λ : a −→ λa. Since λa(e) = a, we have λa = λb can

only be true if a = b. Thus λ is injective. To show it is a homomorphism we have
to show that λab = λa ◦ λb. The following computation does that. We have for all
g ∈ G,

λab(g) = (ab)g = a(bg) = λa(bg) = λa(λb(g)) = (λa ◦ λb)(g)

For a finite set T of cardinality n, it should be clear that ST is isomorphic to
Sn. Nevertheless, it is worth explicitly giving a construction of an embedding of
G into Sn, for |G| = n. Suppose G has order n and enumerate the elements of G
so G = {g1, . . . , gn}. For any a ∈ G, we have shown that λa, left multipication by
a, permutes the elements of G. Define ϕa ∈ Sn by ϕa(i) is the unique j such that
agi = gj . We may then write agi = gϕa(i). Observe that

gϕab(i) = abgi = a(bgi) = a(gϕb(i)) = gϕa(ϕb(i)) = gϕa◦ϕb(i)

This shows that ϕab = ϕa ◦ ϕb so the function ϕ is a homomorphism.

Exercises 2.4.20. Cayley’s Theorem

(a) Let n = 5 and think of Zn in the usual way as {0, 1, 2, 3, 4} with addition
modulo n. For each a ∈ Zn write down in tabular form the function on Zn
defined by addition of a.

(b) Show that part (a) defines a function from Z5 to S5, provided you think of
S5 as the group of permutations of {0, 1, 2, 3, 4}. Show that this function is
a homomorphism.

(c) Now consider Z2 × Z2. Enumerate the 4 elements in any way you choose as
a1, a2, a3, a4. For each ai define a permutation σi by aia1 = aσi(1), aia2 =
aσi(2), aia3 = aσi(3), aia4 = aσi(4).

(d) Show in part (c) that this gives a homomorphism from Z2 × Z2 to S4.

(e) Similarly, the next steps define a homomorphism from D3 to S6. Enumerate
the elements of as follows

D3 =
{
a1 = r0, a2,= r, a3 = r2, a4 = t, a5 = rt, a6 = r2t

}
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For each ai define a permutation σi in S6. Since a1 is the identity in D3, σ1
is the identity permutation in S3. One can see that σ2 is given by σ2(i) = k
whenever rai = ak. Verify that each σi is indeed a permutation by writing
it in permutation notation.

(f) Verify in three examples that for any a, b ∈ D3, the permutation correspond-
ing to ab equals the product of the permutations corresponding to a and b.

(g) Which elements of D3 correspond to odd permutations in S6?

Exercises 2.4.21.

(a) Let A and B be disjoint subsets of {1, . . . , n}. Explain how to think of
SA × SB as a subgroup of Sn.

(b) Generalize to any partition of {1, . . . , n}.
Exercises 2.4.22.

(a) Let n be a positive integer and k > n/2. Find a formula for the number of
elements of Sn that include a k-cycle.

(b) Use Stirling’s formula to approximate the formula you just computed.

(c) Estimate the probability that a random element of Sn has a cycle of length
larger than n/2.
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2.5 Generators and Relations

There is another way to describe groups using “generators” and “relations.” A
set of generators for the group is given, and then certain properties that must be
satisfied by those generators are listed. The latter are called the relations. Identi-
fying the generators and relations for a group is called giving a presentation of
the group. The group is then the set of all possible products of the generators and
their inverses (these are informally called “words”). The relations say that some
words are equal to the identity, so they give a way to simplify words. The descrip-
tion via generators and relations can be straightforward in the simplest instances,
but it is quite subtle in general. We give a few examples here and defer a more
thorough treatment to Section 3.4.

We have noted that Z requires only one generator, as do the groups Zn. We
may describe Zn (actually a group isomorphic to it) using the generator a, and the
relation an = 1, in which I use 1 for the identity element. This would be written

〈a|an = 1〉

The homomorphism Zn −→ 〈a|an = 1〉 taking 1 to a is clearly an isomorphism.
We could also describe Zn in other ways. For example when p and q are distinct

primes (or even just coprime to each other), we could use two generators.

Zpq ∼= 〈a, b|ap = 1, bq = 1, ab = ba〉

This tells us that a is an element of order p, b is an element of order q and that a
and b commute. The latter relation could also be written aba−1b−1 = 1.

Exercises 2.5.1.

(a) Show that the presentation for Zpq in the previous paragraph is isomorphic
to the group with presentation 〈c|cpq = 1〉 via the function c→ ab.

The dihedral group Dn has a presentation as follows

〈a, b|an = 1, b2 = 1, ba = an−1b〉

The generator a is clearly playing the role of rotation by 2π/n and b the role of
a reflection. The final relation tells us that in any product using a and b we can
switch any occurrence of ba to be an−1b and thereby rearrange so that all the as
are on the left and all the bs on the right. So, just using these relations we know
that any element of this group can be uniquely written aibk for i ∈ {0, . . . , n− 1}
and k ∈ {0, 1}. The group product is easily summarized by the following

(ai)(ajbk) = ai+jbk

(aib)(ajbk) = ai−jbk+1
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Exponents on a are computed modulo n and on b modulo 2. It is easy to verify
that our earlier discussion of Dn (Section 1.2) is consistent with the description
here: for any reflection ti, tir = r−1ti.

Exercises 2.5.2. Here is another group. It is called the quaternion group.

Q = 〈a, b | a4 = 1, b2 = a2, ba = a−1b〉

(a) Show that Q has 8 elements. List them in a useful fashion and show how to
multiply them as we did for the dihedral group.

(b) Show that Q has 1 element of order 2 and 6 of order 4.

(c) Draw the lattice diagram for this group.

Exercises 2.5.3. The infinite dihedral group. Let

D∞〈a, b | b2 = 1〉

(a) Show that D∞ is a symmetry group of the following diagrams.

(b) What other symmetries do these diagrams have that are not captured by
D∞?
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2.6 Cosets and Conjugates

Let H be a subset of G. In this section we define cosets of H and show an
extremely important result (Lagrange’s Theorem) that the cosets form a partition
of G. We also show there is another interesting partition of G that is determined
by a relation called conjugacy.

The following bit of notation is useful.

Notation 2.6.1. Let S and T be subsets of a group G.

ST = {st : s ∈ S, t ∈ T}

So, ST is the set of all products of an element in S (on the left) and an element of
T (on the right). Similarly, for g ∈ G, gS = {gs : s ∈ S}. We may use analogous
notation for the set of all products from 3 or more sets, taking note that for three
sets, (ST )U = S(TU), by associativity, so we may just call this set STU .

If the group is abelian and the operation is + we write S + T instead of ST .

Notice that ST and TS are not necessarily equal when the group G is not
abelian.

Exercises 2.6.2. R

evisiting the properties of a subgroup.

(a) Let T be a subset of a group G. Prove that T is a subgroup of G if and only
if TT = T and T−1T = T .

(b) Let T be a subset of the finite group G. Prove that TT = T if and only if T
is a subgroup of G.

(c) Give an example to show that for an arbitrary group show that TT = T is
not sufficient to ensure T is a group of G.

Definition 2.6.3. Let H ≤ G and let g ∈ G. The set gH is a left coset of H in
G. Similarly, Hg is a right coset of H in G.

We will prove several results for left cosets. There are analogous results for
right cosets.

Lemma 2.6.4. Let G be a group and H a subgroup of G. The function

λg : H −→ gH

h 7−→ gh

is a bijection.
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Proof. The function λg is a surjection by the definition of gH. Suppose gh = gh′.
Multiplying on the left by g−1 gives h = h′. This shows λg is injective.

Lemma 2.6.5. Let G be a group and H a subgroup of G. For a, g ∈ G, if
gH ∩ aH 6= ∅ then gH = aH.

Proof. First, we show that if g ∈ aH then gH ⊆ aH. Let g ∈ aH, so there is some
k ∈ H such that g = ak. For any h ∈ H, we have gh = akh and this is an element
of aH because kh ∈ H since H is a subgroup of G. This shows gH ⊆ aH.

Suppose gH ∩ aH is nonempty, containing some element x. Then there are
h, k ∈ H such that x = gh = ak. Then g = akh−1 ∈ aH and similarly a =
ghk−1 ∈ gH. From the previous paragraph, we have aH ⊆ gH and gH ⊆ aH, so
aH = gH.

Theorem 2.6.6 (Lagrange). Let G be a group with subgroup H. The set of cosets
of H form a partition of G.

Consequently, if G is a finite group with subgroup H then the order of H divides
the order of G. In particular, the order of any element of G divides |G|.

Proof. Any g ∈ G is in some coset, namely gH, so the cosets cover G. The previous
lemma shows that any two unequal cosets are disjoint. Thus the cosets partition
G.

Suppose G is finite. Since the cosets of H partition G, there are elements
a1, . . . , at such that G is the disjoint union of a1H, a2H, . . . , atH. The cosets of H
all have the same number of elements by Lemma 2.6.4. Thus |G| =

∑t
i=1|aiH| =

t|H|, and the number of elements of G is a multiple of |H|.
For any a ∈ G the number of elements in the subgroup 〈a〉 is ord(a). So ord(a)

divides |G|.

Definition 2.6.7. Let H ≤ G. The index of H in G, written [G : H], is the
number of cosets of H in G, which may be infinite.

If G is finite and H ≤ G then [G : H] = |G|/|H|, since all cosets have |H|
elements.

Exercises 2.6.8. Recall that the exponent of a group G is the lcm of the orders of
the elements (if this is finite).

(a) For a finite group G with finite exponent t show that t divides the order of
G.

(b) Give an example to show that there may not be an element in G whose order
is the exponent of G.
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Conjugation

Now we consider conjugation.

Definition 2.6.9. Let a ∈ G and g ∈ G. The element aga−1 is called the conju-
gation of g by a. If S is a subset of G, we define aSa−1 to be

{
asa−1 : s ∈ S

}
.

It is the conjugation of S by a.

Proposition 2.6.10. Conjugacy on a group G determines an equivalence relation.

Proof. Let G be a group and define a relation on G by a is related to b if there
is some g such that b = gag−1. The relation is reflexive, because for any a ∈ G,
eae−1 = a. The relation is symmetic, because if a is related to b (say b = gag−1)

then we also have a = g−1b
(
g−1
)−1

so b is related to a. Finally suppose a is
related to b (again b = gag−1) and b is related to c (so there is some h ∈ G with
c = hbh−1). Then

c = hbh−1 = h
(
gag−1

)
h−1 =

(
hg
)
a
(
hg
)−1

This shows that a is related to c. We have shown that conjugacy determines an
equivalence relation on G.

Exercises 2.6.11. Let C(a) = {g ∈ G : ga = ag} be the centralizer of a.

(a) Show that C(a) is a subgroup of G.

(b) Let G be a finite group. Show that the number of elements of G conjugate
to a is |G|/|C(a)|. [Consider the cosets of C(a).]

Exercises 2.6.12. Conjugates and subgroups.

(a) Show that An is invariant under conjugation: for any π ∈ Sn, πAnπ
−1 = An.

(b) Let Cn be the rotation subgroup of Dn. Find two elements of C4 that are
conjugate as elements of D4 but are not conjugate as elements of C4.

(c) Find two elements of D4 that are conjugate as elements of S4 but are not
conjugate as elements of D4.

Exercises 2.6.13. Let H be a subgroup of a group G.

(a) Let a ∈ G. Show that aHa−1 is a subgroup of G.

(b) Show that there is an isomorphism between H and aHa−1.

Exercises 2.6.14. Inner automorphisms.

(a) Define a function ϕa : G −→ G by ϕ(g) = aga−1. Show that ϕa is an
automorphism of G.

(b) Show that ϕ : G −→ Aut(G) defined by ϕ : a 7−→ ϕa is a homomorphism.
The image, {ϕa : a ∈ G}, is therefore a subgroup of Aut(G). It is called
Inn(G), the group of inner automorphisms of G.
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(c) What is the kernel of ϕ?

Proposition 2.6.15. Let π ∈ Sn. For any σ ∈ Sn, the signature of σ and the
signature of πσπ−1 are the same.

One proof is contained in the following suite of exercises.

Exercises 2.6.16. Consider conjugation by π ∈ Sn.

(a) Let (a1, a2, . . . , ak) ∈ Sn be a k-cycle, so the ai are distinct. Show that

π ∗ (a1, a2, . . . , ak) ∗ π−1 =
(
π(a1), π(a2), . . . , π(ak)

)
[Consider two cases, b = π(ai) for some i, and b 6∈ {π(a1), π(a2), . . . π(ak)}.
Explain why this breakdown into two cases makes sense.]

(b) If A and B are disjoint subsets of {1, . . . , n} show that π(A) and π(B) are
also disjoint.

(c) If σ = σ1σ2 · · ·σk is the cycle decomposition of σ, find the cycle decomposi-
tion of πσπ−1 and justify your answer.

(d) Conclude that the conjugation of any σ ∈ Sn by π has the same signature
as σ.
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2.7 Normality and the First Isomorphism Theorem

Let’s pause for a moment to think about homomorphisms, particularly the spe-
cial cases: injective homomorphisms (one-to-one) and surjective homomorphisms
(onto).

Suppose H is a subgroup of G. There is a injective function from H to G, which
is called the inclusion map, that simply takes h ∈ H to itself, as an element of
G. Since H is a subgroup of G (it’s multiplication is the same as the one on G),
the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that
ϕ : H −→ G is an injective homomorpism. Proposition 2.2.5 shows that ϕ(H) is
a subgroup of G. Thus the bijection ϕ : H −→ ϕ(H) is actually a homomorphism
of groups. This shows that the image of an injective homomorphism ϕ : H −→ G
is a subgroup of G that is isomorphic to H. Thus, the study of injective homo-
morphisms is essentially the study of subgroups.

This section and Section 2.9 are focused on surjective homomorphisms, which
are intimately related to subgroups that have a special property, treated in the
next proposition.

Theorem 2.7.1 (Normal Subgroups). Let N be a subgroup of G. The following
are equivalent.

(1) Na = aN for all a ∈ G.

(2) aNbN = abN for all a, b ∈ G.

(3) aNa−1 ⊆ N for all a ∈ G.

(4) aNa−1 = N for all a ∈ G.

Proof. We prove a series of implications that shows the conditions are equivalent.
(1) =⇒ (2): (aN)(bN) = a(Nb)N = a(bN)N = (ab)N . Here we have used
asociativity, then the assumption in (1), and finally, NN = N sinceN is a subgroup
of G.
(2) =⇒ (3): Set b = a−1. Then, using (2), aNa−1N = aa−1N = eN . In particular,
this shows that aNa−1 ⊆ N .
(3) =⇒ (4): For any a ∈ G, applying (3) to a−1, we have that a−1Na ⊆ N .
Conjugating by a, we get

a(a−1Na)a−1 ⊆ aNa−1

The left hand side is N . Thus, assuming (3) we have both aNa−1 ⊆ N and
N ⊆ aNa−1, which proves (4).
(4) =⇒ (1): Multiplying aNa−1 = N on the right by a gives (1).
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These arguments may seem slippery since they involve computations with sets.
The proofs can also be done elementwise. Consider (4) =⇒ (1). Let a ∈ G. Given
any n ∈ N , we know ana−1 ∈ N , say ana−1 = n′. Then an = n′a ∈ Na. Since
n was arbitrary, aN ⊆ Na. The reverse containment is proven analogously, using
a−1na ∈ N .

Definition 2.7.2. A group satisfying the conditions of the theorem is called nor-
mal. We write N E G for N a normal subgroup of G.

Exercises 2.7.3.

(a) Let H be a subgroup of a group G such that for any a ∈ G there is a b
in G such that aH = Hb. (Every left coset is also a right coset, but not
necessarily defined by the same element of G.) Prove that H is normal in G.

Let N be normal in G. Suppose aN = bN and rN = sN . Then a ∈ bN and
r ∈ sN , so ar ∈ bNsN = bsN . By Lemma 2.6.5, arN = bsN . Consequently,
there is a well-defined operation on cosets of N in G that takes the pair (aN, bN)
to abN (it doesn’t matter which element we choose to represent each coset). The
next theorem shows that this gives a group structure on the cosets of N in G.

Theorem 2.7.4. Let N be a normal subgroup of G. Let G/N be the set of cosets
of N in G with the binary operation by aN ∗ bN = abN . Then G/N is a group.

Proof. We have proven above that the product aNbN is well defined and equal to
abN . Associativity is inherited from associativity of ∗G (check!). The identity is
eN . The inverse of aN is a−1N .

We call G/N the quotient of G by N and the homomorphism G −→ G/N is
called the quotient map. Some sources call G/N a factor group.

Every subgroup of an abelian group A is normal in A, so for any subgroup B
of A there is quotient group A/B.

Example 2.7.5. In Z the only subgroups are nZ. The quotient group Z/nZ has the
distinct elements a+nZ for a ∈ {0, . . . , n− 1}. Clearly this is just another way to
think about the additive group of integers modulo n. It is isomorphic to Zn.

Exercises 2.7.6. Additional properties of normal subgroups.

(a) Let N be a normal subgroup of G. For any subgroup H of G, H ∩ N is a
normal subgroup of H.

(b) If ϕ : G −→ H is a homomorphism and N is normal in H, then ϕ−1(N) is
normal in G.

(c) Show that any subgroup of index 2 is normal.
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Exercises 2.7.7. The center of G is the set of elements in G that commute with
all elements of G, Z(G) = {a ∈ G : ag = ga for all g ∈ G}.

(a) Prove that any subgroup of the center of G, including Z(G) itself, is normal
in G.

(b) Find the center of D4; it is not trivial.

Exercises 2.7.8. Example of normal subgroups.

(a) Find all normal subgroups of D4, D5, and D6.

(b) Find all normal subgroups of A4.

(c) Find all normal subgroups of the quaternions, Q.

Isomorphism and Factor Theorems

We are now in the position to say more about the relationship between homomor-
phisms and normal subgroups.

Theorem 2.7.9 (First Isomorphism). Let ϕ : G −→ H be a surjective homomor-
phism with kernel K. Then K is a normal subgroup of G and G/K is isomorphic
to H.

Proof. First we prove that K is normal by showing aKa−1 ⊆ K for all a ∈ G. For
any k ∈ K,

ϕ(aka−1) = ϕ(a)ϕ(k)ϕ(a−1) = ϕ(a)eHϕ(a−1) = ϕ(aa−1) = ϕ(eG) = eH

Thus aka−1 ∈ K.
Let g ∈ aK, so g = ak for some k ∈ K. Then ϕ(g) = ϕ(a)ϕ(k) = ϕ(a).

Consequently, all elements of a fixed coset of K ahve the same image under ϕ, so
there is a well defined map ϕ̃ : G/K → H taking aK to ϕ(a).

To show ϕ̃ is a homomorphism, let aK and bK be elements of G/K. Since
K is normal, ϕ̃(aKbK) = ϕ̃(abK) = ϕ(ab) by the definition of multiplication in
G/K and the definition of ϕ̃. Since ϕ is a homomorphism, ϕ(ab) = ϕ(a)ϕ(b) =
ϕ̃(aK)ϕ̃(bK). thus ϕ̃(aKbK) = ϕ̃(aK)ϕ̃(bK), which shows ϕ̃ is a homomorphism.

Since ϕ is surjective, for any h ∈ H there is some a ∈ G such that ϕ(a) = h.
Then ϕ̃(aK) = h, so ϕ̃ is surjective.

To show that ϕ̃ is injective, suppose ϕ̃(aK) = eH . Then ϕ(a) = eH so a ∈ K
and aK = eGK. Thus the kernel of ϕ̃ just contains just the identity element of
G/K.

Here is a typical snappy use of the First Isomorphism theorem.
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Theorem 2.7.10. Let G1, G2, . . . Gr be groups and let N1, N2, . . . , Nr be normal
subgroups, Ni EGi. There is a well defined map

(G1 ×G2 × · · · ×Gr)/(N1 ×N2 × · · · ×Nr) −→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr)

(g1, g2, . . . , gr) (N1 ×N2 × · · · ×Nr) 7−→ (g1N1, g2N2, . . . grNr)

and it is an isomorphism.

Proof. By the Direct Product Theorem 2.3.4, the projection of G1×G2×· · ·×Gr
onto Gi is a homomorphism. Composing this with the quotient map Gi −→
Gi/Ni, we get maps G1 ×G2 × · · · ×Gr −→ Gi/N . Proposition 2.3.6 then gives a
homomorphism

G1 ×G2 × · · · ×Gr
ϕ−→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr),

To be specific, let us show that ϕ respects products. (g1, g2, . . . , gr) and (g′1, g
′
2, . . . , g

′
r)

be elements of G1 ×G2 × · · · ×Gr. Then

ϕ
(

(g1, g2, . . . , gr) ∗ (g′1, g
′
2, . . . , g

′
r)
)

= ϕ
(

(g1g
′
1, g2g

′
2, . . . , grg

′
r)
)

= (g1g
′
1N1, g2g

′
2N, . . . , grg

′
rNr)

= (g1N1, g2N2, . . . , grNr) ∗ (g′1N1, g
′
2N2, . . . , g

′
rNr)

= ϕ(g1, g2, . . . , gr) ∗ ϕ(g′1, g
′
2, . . . , g

′
r)

We used, in order, the definition of multiplication in G1 × G2 × · · · × Gr, the
definition of ϕ, the definition of multiplication in G1/N1 ×G2/N/2× · · · ×Gr/Nr

(and the Ni being normal), and finally, the definition of ϕ.
The kernel of ϕ is the set of (g1, . . . , gr) such that g1N1, g2N2, . . . , grNr =

N1 ×N2 × · · · ×Nr. Each gi must be in Ni. So, the kernel is e1N1 × e2N2 × · · · ×
erNr. Surjectivity is easy to check, so the first isomorphism theorem now gives
the result.

A generalization of the first isomorphism theorem that we will often use treats
the case when ϕ : G −→ H is not necessarily surjective.

Theorem 2.7.11 (Factor). Let ϕ : G −→ H be a homomorphism of groups with
kernel K. Let N be a normal subgroup of G that is contained in K. Then ϕ can
be factored into the canonical surjective homomorphism π : G −→ G/N followed
by a homomorphism ϕ̄ : G/N −→ H.

By letting N = K we conclude that any homomorphism can be factored into a
surjective homomorphism followed by an injective homomorphism.
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Proof. Define ϕ̃ by gN 7−→ ϕ(g). This is well defined because N is contained in
the kernel of ϕ so for any n ∈ N , ϕ(gn) = ϕ(g)ϕ(n) = ϕ(g)eH = ϕ(g). From this
definition it is immediate that ϕ̃ ◦ π = ϕ.

The proof that ϕ̃ is a homomorphism is similar to the proof of the First Iso-
morphism Theorem.

When N = K, we want to show that ϕ̃ is injective. Suppose ˜ϕ(gN) = eH . By
the definition of ϕ̃, we have ϕ(g) = eH . Thus g ∈ K, and therefore gK = eK, the
identity element of G/K.

The Factor Theorem and First Isomorphism Theorem give us a framework for
understanding the material that we have seen earlier. As we said above the group
Zn is just the quotient of Z by its normal subgroup nZ (well isomorphic to it). In
the context of groups we have given a shorthand notation to Z/nZ, calling it Zn.

Recall that Proposition 2.2.4 says that given any group G and g ∈ G there is
a homomorphism Z −→ G taking 1 to g. If g has infinite order then the cyclic
group, 〈g〉, is isomorphic to Z. If g has finite order n then the factor theorem says
that Zn is isomorphic to 〈g〉 via the homomorphism taking 1 (in Zn) to g.
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2.8 More Examples of Groups

Before continuing the theoretical development we introduce a few more interesting
families of groups. The first set are abelian, derived from the number systems
discussed in Section 1.2. The second family is matrix groups, which are (generally)
non-abelian.

Groups from Familiar Number Systems

We have already treated the additive group of the integers, Z as well as its sub-
groups nZ. We have also used the integers modulo n, which we can now identify
as the quotient group of Z by its subgroup nZ. As pointed out in Section 1.2,
the additive group of the fields Q (rational numbers), R (real numbers) and C
(complex numbers) are abelian groups. They are complicated as groups because
they are not finitely generated. The next exercise shows that the quotient Q/Z is
interesting; every element has finite order, but the group is not finitely generated.

Exercises 2.8.1.

(a) Consider the group Q/Z. Show that every element has finite order.

(b) On a number line, sketch a region that contains one element for each equiv-
alence class of Q/Z.

(c) Show that for any integer n there is an element of order n in Q/Z.

(d) How many elements of order n are there in Q/Z?

(e) Show that for any finite set {r1, r2, . . . , rt} of rational numbers,

〈r1 + Z, r2 + Z, . . . , rt + Z〉 6= Q/Z

This shows that the group Q/Z is not finitely generated.

We can also consider the multiplicative groups from familiar number systems.

Example 2.8.2. As we noted in Section 1.1 there is both an additive and a multi-
plicative structure Z/n, to the integers modulo n. For an integer a that is comprime
to n there are integers u, v such that ua + nv = 1 by the GCD theorem. Then u
is the multiplicative inverse of a modulo n. The converse is also true, if a + nZ
has multiplicative inverse u+ nZ then ua differs from a multiple of n by 1, so the
GCD of a and n is 1. The set of units in Zn, is the set of those elements with a
multiplicative inverse. One can check that this set forms an abelian group under
multiplication, written Un: 1 is the identity element, every element has an inverse
by definition, the product of two units is also a unit (with (ab)−1 = a−1b−1), and
multiplication is associative and commutative.
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For a prime number p, every nonzero element in Z/p is a unit, so Z/p is a field.
When considering it as a field we will write it Fp.
Exercises 2.8.3.

(a) Prove that Aut(Zn) ∼= Un, the group of units in Zn.

(b) We will prove in Section 3.2 that every finite abelian group is isomorphic to
a cyclic group or a direct product of such. For each of n = 8, 9, 10, 11, 12
find the product of cyclic groups that is isomorphic to Un.

Returning to the fields Q, R, C, we now consider their multiplicative groups
Q∗, R∗, and C∗.
Example 2.8.4. In Q∗, the subgroup generated by 2 is

{
2i : i ∈ Z

}
. The subgroup

generated by 2 and 2 is 〈2, 3〉 =
{

2i3j : i, j ∈ Z
}

. There is only one element of
finite order in Q∗, other than the identity element, namely −1, which has order 2.

Similarly the only non-identity element of R∗ which has finite order is −1. To
get elements of order n we are, in effect, looking for solutions of xn−1, that is nth
roots of unity. These live in the complex number field C.

Exercises 2.8.5. An isomorpism between an additive group and a multiplicative
group.

(a) Show that there is a homomorphism from Q,+ to C∗, ∗, namely a 7−→ ea2πi.

(b) Show that the image is the set of all nth roots of unity (for n ∈ N) and that
this forms a subgroup of C∗ under multiplication.

(c) What is the kernel?

Exercises 2.8.6.

(a) Show that the positive rational numbers Q∗∗ = {a ∈ Q : a > 0} form a sub-
group of Q∗.

(b) Show that Q∗ is isomorphic to the direct product of Q∗∗ and 〈−1〉.
(c) Extend this result to the multiplicative group of the real numbers, R∗.

Matrix Groups

We will work primarily with matrix groups over the fields, Q, R, C and Fp, but
the general results below are true for any field, so we express them for a general
field F . We denote the multiplicative group of F by F ∗.

Definition 2.8.7. Let F be a field and let n be an integer. The set of n×nmatrices
over F with nonzero determinant is called the General Linear Group and is
written GLn(F ). The subgroup consisting of the matrices with determinant 1 is
the Special Linear Group and is written SLn(F ). The next proposition shows
that these are indeed groups with the identity matrix, In as identity element.
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Proposition 2.8.8. Let F be a field and let n be an integer. The set of n ×
n matrices over F with nonzero determinant forms a group. The determinant
function

det : GLn(F ) −→ F

is a homomorphism, and its kernel is SLn(F ).

Proof. Matrix multiplication is associative: One can show that for n× n matrices
A,B,C, the i, j component of the product of A(BC) and of (AB)C is

n∑
s=1

n∑
t=1

aisbstctj

Thus A(BC) = (AB)C. (Associativity holds for any product of matrices that is
well defined. We are treating the special case where they are all square of the same
dimension.)

The result from linear algebra (which we assume here) that the determinant of
a product of two matrices is the product of their determinants shows, in particu-
lar, that the product of two matrices with nonzero determinant also has nonzero
determinant. So GLn(F ) is closed under multiplication. The identity matrix, In,
and the usual formula for the inverse of a matrix perform the expected roles to
make GLn(F ) a group. The determinant function respects products, so it gives a
homomorphism to F . The kernel is the subgroup of matrices with determinant 1,
that is SLn(F ).

Exercises 2.8.9. There are many interesting subgroups of the general linear group.

(a) Show that the general linear group has these subgroups:

• The diagonal matrices with nonzero entries on the diagonal.

• The matrices of the form aIn for a ∈ F are called the constant diagonal
matrices. Taking a nonzero we get the subgroup F ∗In of GLn(F ). Show
that F ∗In is the center of GLn(F ) when n > 1.

• The upper triangular matrices with nonzero entries on the diagonal.

• The orthogonal group O(n, F ) is the group of matrices Q such that
Q−1 is the transpose of Q.

(b) For any subgroup H of F ∗ the set of all matrices with determinant in H is
a subgroup of GL(n, F ).

There are two other matrix groups of particular interest. In the exercises above,
it is claimed that, for n > 1, the constant diagonal matrices, F ∗In form the center
of GLn(F ). In particular F ∗In is normal in GLn(F ).
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Definition 2.8.10. The quotient group GLn(F )/F ∗In is called the Projective

General Linear Group and is written PGLn(F ). The quotient group SLn(F )/
(
F ∗In∩

SLn(F )
)

is called the Projective Special Linear Group and is written PSLn(F ).

Exercises 2.8.11.

(a) Show that the subgroup of upper triangular 2 × 2 matrices is conjugate to

the group of lower triangular matrices. [Hint:

[
0 1
1 0

]
.]

(b) Show that the set of matrices with nonzero determinant of the form

[
0 a
b c

]
is a coset of the upper triangular matrices.

Example 2.8.12. In GL(2,C) consider the matrices

I =

[
1 0
0 1

]
A =

[
i 0
0 −i

]
B =

[
0 1
−1 0

]
C =

[
0 i
i 0

]
The set of matrices Q = {±I,±A,±B,±C} is called the quaternion matrix group.

Exercises 2.8.13.

(a) Show by brute force that the quaternion matrix group is indeed a group.

(b) Find the order of each element of Q.

(c) Show that no two of the groups Z2 × Z2 × Z2, Z4 × Z2, Z8, D4, and Q are
isomorphic. [Investigate the number of elements of order 4.]

Exercises 2.8.14.

(a) Show thatD4 is isomorphic to the matrix group with elements {±I,±A,±B,±C}
where

I =

[
1 0
0 1

]
A =

[
0 1
−1 0

]
B =

[
1 0
0 −1

]
C =

[
0 1
1 0

]
(b) Draw the lattice diagram for this matrix group (it looks just like D4, but

use the elements here).

(c) More generally find a subgroup of GL2(R) that is isomorphic to Dn. (Re-
member your trigonometry.)

Another interesting class of matrices is permutation matrices. Let σ ∈ Sn.
Consider the matrix P σ that has a single 1 in each column with the other entries
being 0, specifically, P σi,σ(i) = 1. Notice that P σ can be considered as a matrix

over any field F . For v ∈ Fn, and i ∈ {1, . . . , n} the σ(i) component of the vector
P σ(v) is vi. So, P σ permutes the components of v. Another way to say this is
that the ith component of P σ(v) is vσ−1(i).

In particular, the null space of P σ is trivial, so P σ ∈ GLn(F ).
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Proposition 2.8.15. The function from Sn to GLn(F ) taking σ to P σ is an
injective homomorphism.

Proof. We must check that P πP σ = P πσ, which we do by verifying that for any v ∈
Fn, the ith components of P π

(
P σ(v)

)
= P πσ(v) are the same. The ith component

of P πσ(v) is v(πσ)−1(i). The ith component of P π
(
P σ(v)

)
is the π−1(i) component

of P σ(v), which is the σ−1
(
π−1(i)

)
component of v. Since πσ = σ−1π−1, the two

matrices P πP σ and P πσ are giving the same answer.
Injectivity is clear because the only permutation σ such that pσ takes each

basis vector to itself is the identity permutation.
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2.9 Structure in the Quotient Group:
The Third Isomorphism Theorem and the Corre-
spondence Theorem

The next step is to understand the structure of a quotient group. The two main
results—the third isomorphism theorem and the correspondence theorem—have
fairly simple statements, which obscure some subtle issues. The proof of the third
isomorphism theorem is a consequence of the first isomorphism theorem.

Theorem 2.9.1 (Third Isomorphism). Let N and K be normal subgroups of G
with K contained in N . Then N/K is a normal subgroup of G/K and

(G/K)

(N/K)
∼= G/N.

Proof. We have two well defined quotient groups of G: G/K and G/N . I claim
that there is a well-defined function from G/K to G/N taking gK to gN . To prove
this, we have to check that if two cosets aK and bK are equal then the cosets aN
and bN are also equal. Suppose aK = bK. Then a−1b ∈ K and since K ⊆ N we
have a−1b ∈ N . Consequently aN = bN , so there is a function taking aK to aN .

It is easy to check that the function ϕ : G/K −→ G/N defined above is
surjective and a homomorphism. Given any gN there is an element, namely gK,
that clearly maps to it, ϕ(gK) = gN , so we get surjectivity. Finally, ϕ respects
multiplication: ϕ(gK ∗ g′K) = ϕ(gg′K) = gg′N = gN ∗ g′N = ϕ(gK) ∗ ϕ(g′K)

The kernel of ϕ is {gK : gN = eN}. But gN = eN if and only if g ∈ N . So the
kernel is N/K. Applying the First Isomorphism Theorem 2.7.9 to ϕ : G/K −→
G/N ,

(G/K)

(N/K)
∼= G/N.

The more powerful theorem is the correspondence theorem, which we may be
seen as a strengthening of the First Isomorphism Theorem. Before stating it, let
us recall some simple facts about functions. Let f : X → Y and let A ⊆ X and
B ⊆ Y . Then A ⊆ f−1(f(A)) because for any a ∈ A, a ∈ f−1(f(a). On the other
hand, for an element b ∈ B, if x is a preimage of b then f(x) = b, but there may
be no preimage for b, so we know only that f(f−1(B)) ⊆ B. But, if f is surjective
then for each b ∈ B there is some x ∈ X such that f(x) = b. Thus for f surjective,
f(f−1(B)) = B. Respecting containment is also immediate: If A ⊆ A′ ⊆ X then
f(A) ⊆ f(A′) and similarly if B ⊆ B′ ⊆ Y then f−1(B) ⊆ f−1(B′).
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Theorem 2.9.2 (Correspondence). Let ϕ : G −→ H be a surjective homomor-
phism with kernel K. There is a one-to-one correspondence, given by ϕ, between
subgroups of G/K and subgroups of G containing K.

G −→ H

A←→ ϕ(A)

ϕ−1(B)←→ B

The correspondence respects containment, normality, and quotients as follows. For
A,A′ containing K,

• K ≤ A ≤ A′ if and only if ϕ(A) ≤ ϕ(A′).

• A is normal in G if and only if ϕ(A) is normal in H.

• When A is normal in G, the map ϕ induces an isomorphism G/A ∼= H/ϕ(A).

Proof. Let A be a subgroup of G containing K and let B be a subgroup of H. From
Proposition 2.2.5 we know that ϕ(A) is a subgroup of H and ϕ−1(B) is a subgroup
of G. Based on the above discussion, we know ϕ(ϕ−1(B)) = B and A ⊆ ϕ−1(ϕ(A)
so we need to show that ϕ−1(ϕ(A)) ⊆ A to get the one-to-one correspondence. Let
g ∈ ϕ−1(ϕ(A)). Then ϕ(g) = ϕ(a) for some a ∈ A. Consequently, ϕ(ga−1) = eH
and therefore ga−1 ∈ ker(ϕ) = K. Since K ⊆ A, ga−1 ∈ A so g ∈ A. Thus
ϕ−1(ϕ(A)) = A. Thus, we have established the one-to-one correspondence.

We have also shown in a problem in Exercise 2.7.6 that if B is normal in H
then ϕ−1(B) is normal. These results are true for an arbitrary homomorphism.
Let’s now show that when ϕ is surjective, if A is normal in G then ϕ(A) is normal
in H.

Let h ∈ H. We need to show hϕ(A)h−1 = ϕ(A), or equivalently, hϕ(a)h−1 ∈
ϕ(A) for all a ∈ A. Since ϕ is surjective, there is some g ∈ G such that ϕ(g) = h.

hϕ(a)h−1 = ϕ(g)ϕ(a)ϕ(g)−1 = ϕ(gag−1) ∈ ϕ(A)

The last step holds because A is normal in G, so gag−1 ∈ A.
Now we apply the first isomorphism theorem. Let B be normal in H. We have

a composition of surjective homomorphisms

G −→ H −→ H/B

whose kernel is ϕ−1(B). Letting A = ϕ−1(B), the first isomorphism theorem says
that G/A ∼= H/ϕ(A).
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We can derive the Third Isomorphism Theorem as a corollary of the Corre-
spondence Theorem.

Corollary 2.9.3 (Third Isomorphism Theorem). Let KN and N be normal sub-

groups of G with K ≤ N . Then G/N ∼= (G/K)
/

(N/K).

Proof. Apply the correspondence theorem to G −→ G/K. The subgroup N of G

corresponds to the subgroup N/K of G/K. Thus G/N ∼= (G/K)
/

(N/K).

The Third Isomorphism Theorem gives a framework for understanding the
lattices of subgroups

ADD EXAMPLES
Zn
Z4 × Z4

Exercises 2.9.4. For each of the following groups G and for each of the normal
subgroups N E G, identify the sublattice of the G that has the same structure as
the lattice of the quotient group G/N .

(a) D4

(b) A4
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2.10 Problems

Exercises 2.10.1. Define a hemigroup to be a set G with an operation ∗ that is
associative, has an identity element, and such that each element has a right inverse.

(a) Show that the right inverse of a is also a left inverse of a, so that a hemigroup
is actually a group.

Exercises 2.10.2. Let (Un, ∗) be the group of invertible elements of Zn. Find all n
such that (Un, ∗) is isomorphic to

(a) (Z2,+);

(b) (Z4,+);

(c) (Z2 × Z2,+).

Exercises 2.10.3. Some subgroups of abelian groups. Let A be an abelian group
and let m be an integer.

(a) Show that multiplication by m gives a homomorphism of A:

ϕm : A −→ A

a −→ ma

(b) Show that the image and kernel are the groups mA and A[m] from Exer-
cise 2.1.20.

(c) If A is a finite group that has no elements of order m then multiplication by
m gives an isomorphism of A.

(d) If m and n are coprime show that A[m] ∩A[n] = {0}.
Exercises 2.10.4. The torsion subgroup of an abelian group. Let A be an infinite
abelian group. Let Tor(A) be the set of elements with finite order, which is called
the torsion subgroup of A.

(a) Show that Tor(A) is, indeed, a subgroup of A and that it is normal.

(b) Show that Tor(A) =
⋃
m∈NA[m]. (Note that, even inside an abelian group,

the union of subgroups is not usually a group!)

(c) Show that Tor(A/Tor(A)) is trivial. That is, letting T = Tor(A), the only
element of finite order in A/T is the identity element, e+ T .

(d) Give an example of a finitely generated abelian group in which the identity
element together with the elements of infinite order do not form a subgroup.
(As opposed to the torsion subgroup.)

Exercises 2.10.5. “Almost” abelian groups. A group is metabelian when it
has a normal subgroup N such that N and G/N are both abelian. A group is
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metacyclic when it has a normal subgroup N such that N and G/N are both
cyclic.

(a) Show that S3 is metacyclic.

(b) Show that A4 is metabelian but not metacyclic.

(c) Prove that any subgroup of a metabelian group is also metabelian.

(d) Prove that any quotient group of a metabelian group is metabelian. [Look
carefully at the proof of the 2nd isomorphism theorem and adapt it to this
question.]

Exercises 2.10.6. A matrix group. Let G be the group of all matrices of the form
with a, b, c ∈ Q. 1 a b

0 1 c
0 0 1


(a) Find the center C of G and show that C is isomorphic to the additive

group Q.

(b) Show that G/C is isomorphic to Q×Q.

(c) Conclude that G is metabelian.

Exercises 2.10.7. Let H = H(F ) be the set of 3 by 3 upper triangular matrices
over a field F with 1s on the diagonal.

(a) Give a brief explanation of why this is indeed a subgroup of GL(3, F ).

(b) Show that the following 3 types of matrices generate this group.1 a 0
0 1 0
0 0 1

 ,
1 0 c

0 1 0
0 0 1

 ,
1 0 0

0 1 b
0 0 1


(c) Let F = Fp. Explain why H is then generated by 3 matrices, those in the

form above with a = b = c = 1.

(d) Show that H(F2) ∼= D4.

(e) (HW) Show that the center Z(H) consists of all matrices of the form1 0 c
0 1 0
0 0 1

. Furthermore Z(H) ∼= (F,+).

(f) (HW) Show that H/Z(H) is isomorphic to F × F .

(g) (HW) Conclude that H is metabelian.

Exercises 2.10.8. Upper triangular matrices.
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(a) Let F be a field and let F ∗ be its multiplicative group. Show that there is a
homomorphism

{upper triangular matrices in GL(2, F )} −→ (F ∗)2[
a b
0 c

]
7−→ (a, c)

(b) Show that kernel is isomorphic to (F,+) the additive group of F .

Exercises 2.10.9. General linear group.

(a) Which has more elements, unit group of Mat(2,Z/4) or GL(2,F4)? Find the
number of elements in each and characterize U(Mat(2,Z4).

(b) Try to generalize: How many elements are there in GL(n,Fp)? In SL(n,Fp)?
Exercises 2.10.10. Some normal subgroups

(a) Show that the intersection of two normal subgroups of G is normal in G.

(b) Let G be a group, possibly infinite. Let I be some indexing set and for each
i ∈ I let Hi be a subgroup of G. Prove that for any a ∈ G,

a
(⋂
i∈I

Hi

)
a−1 =

⋂
i∈I

aHia
−1

(c) Let H be a subgroup of G and let N =
⋂
g∈G g

−1Hg. Prove that N is normal
in G.

(d) Let n ∈ N and let K be the intersection of all subgroups of G of order n.
Prove that K is normal in G.

An earlier exercise showed that every group of index 2 is normal. Here is a
generalization due to Lam [MAA Monthly Mar. 2004 p. 256].

Theorem 2.10.11. Let H be a subgroup of G with [G : H] = p a prime number.
The following are equivalent.

(1) H is normal in G.

(2) For any a ∈ G \H, ap ∈ H.

(3) For any a ∈ G \ H, an ∈ H for some positive integer n that has no prime
divisor less than p.

(4) For any a ∈ G−H, a2, a3, . . . , ap−1 6∈ H.

Exercises 2.10.12.
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(a) Prove Lam’s theorem by showing (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). The
last step is the one requiring some cleverness.

(b) Show that Lam’s theorem implies that any group whose index is the smallest
prime dividing |G| is normal in G.

Exercises 2.10.13. Inner automorphisms of a group. For a ∈ G let ϕa be the inner
automorphism defined by a and consider the function ϕ : a 7−→ ϕa.

ϕa : G −→ G ϕ : G −→ Aut(G)

g 7−→ aga−1 a 7−→ ϕa

Clearly im(ϕ) = Inn(G).

(a) Show that Inn(G) is a normal subgroup of Aut(G).

(b) Show that ϕ is a homomorphism and that im(ϕ) ∼= G/Z(G).

Exercises 2.10.14. Computing some simple automorphism groups.

(a) Compute Aut(Q) for Q the quaternion matrix group.

(b) Show that Aut(D4) ∼= D4

Exercises 2.10.15. Automorphism group of Z/pn.

(a) Prove that Aut(F2
p)
∼= GL(2,Fp) for p prime.

(b) Find an element of Aut(F4 × F4) that is not in GL(2,F4).

Exercises 2.10.16. Classification of the groups of order 8. Let G be a group of
order 8. Prove each of the following.

(a) If G has an element of order 8 then G ∼= Z8.

(b) If every nonzero element of G has order 2 then G is abelian and isomorphic
to Z8.

(c) Suppose G has no element of order 8 and some element a ∈ G has order 4.

• If G is abelian then it is isomorphic to Z4 × Z2.

• NEED TO FINISH! If G

Exercises 2.10.17. Symmetries of a solid.

(a) Enumerate the faces of a tetrahedron as follows. Each rigid motion from
the tetrahedron to itself defines a permutation of the vertices. There are 12
such permutations. Write them down in an organized fashion, and briefly
describe each.

(b) Enumerate the faces of a cube as follows. Each rigid motion from the cube to
itself defines a permutation of the vertices. There are 24 such permutations.
Write them down in an organized fashion, and briefly describe each.

Exercises 2.10.18. Counting in Sn.
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(a) How many k-cycles are there in Sn?

(b) How many product of disjoint transpositions are there in Sn?

Exercises 2.10.19.

(a) Let A1, A2, B1, B2 be normal subgroups of a group G with B1 ≤ A1 and
B2 ≤ A2 and finally A1∩A2 = {1}. Then B1B2 is normal subgroup in A1A2

and there holds

(A1A2)/(B1B2) ∼= (A1/B1)⊕ (A2/B2).

v

Exercises 2.10.20. The normalizer and centralizer of a subgroup. Let K be a
subgroup of G and define

NG(K) =
{
g ∈ G : gKg−1 = K

}
CG(K) =

{
g ∈ G : gkg−1 = k for all k ∈ K

}
These are called the normalizer of K in G and the centralizer of K in G.

(a) Show that NG(K) is a subgroup of G.

(b) Show that K is a normal subgroup of NG(K).

(c) If H ≤ G and K is a normal subgroup of H show that H ≤ NG(H). So,
NG(K) is the largest subgroup of G in which K is normal.

(d) Show that CG(K) is a normal subgroup of NG(K).

(e) Show that NG(K)/CG(K) is isomorphic to a subgroup of Aut(K).

Exercises 2.10.21. The commutator subgroup. In a group G, the commutator of
a, b is aba−1b−1. Notice that this is eG iff a and b commute. The commutator
subgroup of a group G is the group G′ generated by the commutators.

G′ = 〈aba−b−1 : a, b ∈ G〉

(a) Compute the commutator subgroup of Dn (two cases: n odd and n even).
Think of Dn as generated by r, t with rn = t2 = e and tr = rn−1t.

(b) Write down the commutator of the conjugation of a by x and the conjugation
of b by x.

(c) Prove that G′ is a normal subgroup of G. It is enough to show that the
conjugation of any commutator is another commutator.

(d) Prove that G/G′ is abelian.
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(e) Prove that G/N abelian implies G′ ≤ N . So, the commutator subgroup of
G is the smallest normal subgroup N group such that the quotient G/N is
abelian.

Exercises 2.10.22. Let G be a group. For a, b ∈ G define the commutator [a, b] :=
aba−1b−1 of a and b. For arbitrary subgroups U, V of G define [U, V ] := 〈[u, v] |
u ∈ U, v ∈ V 〉. Now show the following:

(a) If U, V are normal subgroups of G, then so is [U, V ].

(b) [G,G] is the smallest normal subgroup of G for which the quotient group is
abelian.

(c) Setting G(0) := G and G(i) := [G(i−1), G(i−1)] for all i ∈ N, we find that G is
solvable if and only if there exists n ∈ N such that G(n) = {1}.

(d) For n ≥ 5 let U be a subgroup of Sn and N a normal subgroup of U for
which U/N is abelian. Show that if U contains all 3-cycles of Sn, then also
N will contain these.
Hint: If a, b, c, d, e ∈ {1, . . . , n} are distinct elements, then there holds the
equation

(a, b, c) = (a, b, d)(c, e, a)(d, b, a)(a, e, c).

(e) Show that this implies that the symmetric group Sn is not solvable for n ≥ 5.
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Chapter 3

Classification and Structure of
Groups

3.1 Interaction between Two Subgroups:
The Second Isomorphism Theorem and Semi-Direct
Products

We now consider two subgroups of a group G and prove several results about the
interaction between them. At first we make no additional assumptions on the two
subgroups groups, then we assume that one is normal in G, and finally that both
are. The main result is the second isomorphism theorem. But,we also get two key
corollaries that introduce the notion of an internal direct product (as opposed to
the external direct product that we have been using), and the more general notion
of a semi-direct product (both internal and external).

Lemma 3.1.1. Let K,H be subgroups of G. The following are equivalent:

(1) G = KH and K ∩H = {eG}

(2) Every element of G can be uniquely written as kh for k ∈ K and h ∈ H.

Proof. G = KH is equivalent to saying that every element of G can be written
in the form kh. We’ll next show K ∩H = {eG} if and only if any expression for
g ∈ G as a product kh, with k ∈ K and h ∈ H, is unique.

Suppose K ∩ H = {eG} and k1h1 = k2h2. Then k−11 k2 = h1h
−1
2 . Since this

is in both K and in H, it must be the identity. Therefore, h1 = h2 and k1 = k2,
which proves uniqueness.
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Now suppose that K ∩ H 6= eG; say g ∈ K ∩ H is not equal to eG. Setting
h = g and k = eG gives one way to express g in the form kh, while setting h = eG
and k = g gives a different way. Thus we have non-uniqueness.

As another prelude to the second isomorphism theorem we have the following
lemma. We will use a concise argument to prove a subset B of a group G is a
subgroup. We show that B−1 ⊆ B (closure under inversion) and BB ⊆ B (closure
under products).

Lemma 3.1.2. Let H,K be subgroups of G.

HK = KH ⇐⇒ KH is a subgroup of G

Proof. Suppose HK = KH we will show KH is a subgroup of G. We see KH
is closed under inversion: (kh)−1 = h−1k−1 ∈ HK = KH. We can show that
KH is also closed under products with an element-wise argument, but let’s use
the associativity identified in Notation 2.6.1,

(KH)(KH) = K(HK)H = K(KH)H = (KK)(HH) = KH.

Since KH is closed under inversion and under products, it is a subgroup of G.
Suppose KH is a subgroup of G. Since KH is closed under inversion, KH =

(KH)−1 = H−1K−1 = HK. This gives the reverse implication of the lemma.

Suppose now that H,N are subgroups of G with N normal in G. We can
conclude the following.

• HN = NH since gN = Ng for any g ∈ G.

• HN is therefore a subgroup of G by the lemma.

• N is normal in HN , since it is normal in any subgroup of G that contains it.

Theorem 3.1.3 (Second Isomorphism). Let N be normal in G and H a subgroup
of G. Then HN ∩N is normal in H and H/(H ∩N) ∼= HN/N .

When these groups are finite we may take cardinalities to get

|H||N | = |HN ||H ∩N |

Proof. Consider G
π−→ G/N restricted to the subgroup H, and call the restricted

homomorphism π′ : H −→ G/N . The kernel of π′ is H ∩ N . The image is
HN/N = {hN : h ∈ H} and HN is a subgroup of G as we noted above. By the
first isomorphism theorem, H/(H ∩N) ∼= HN/N .
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The following special case is of interest. It combines the assumptions of Theo-
rem 3.1.3 with those of Lemma 3.1.1.

Corollary 3.1.4. Let H and N be subgroups of G with N EG. Suppose G = HN
and H ∩N = {eG}. Then G/N ∼= H.

Proof. One simply substitutes G for HN and notes H ∼= H/〈eG〉.

Definition 3.1.5. In the situation of the corollary we say that G is the internal
semi-direct product of N by H and we write G ∼= N oH.

Note that the order is important: NoH and HoN mean two different things.
The first assumes N is normal in G and the second assumes H is normal in G.

If both H and N are normal then the two semidirect products are isomorphic
to each other and to the direct product, as the following corollary shows.

Corollary 3.1.6. Suppose K EG and N EG and G = KN and K ∩N = {eG}.
Then elements of K and N commute: for any k ∈ K and n ∈ N , kn = nk.
Furthermore, G ∼= K ×N .

Proof. To prove that elements of K and N commute with each other it is suffi-
cient to show that knk−1n−1 = e. Since N is normal, knk−1 ∈ N and therefore
knk−1n−1 ∈ N . Similarly, since K is normal, nk−1n−1 ∈ K so knk−1n−1 ∈ K.
Now K ∩N = {e} gives the result.

Consider the map K × N ϕ−→ G defined by (k, n) 7−→ kn. The map is well
defined. It is injective since kn = e gives k = n−1 ∈ K ∩N = {e}. It is surjective
since G = KN . It respects multiplication (so is a homomorphism):

ϕ
(
(k1, n1)

)
ϕ
(
(k2, n2)

)
= (k1n1)(k2n2)

= k1(n1k2)n2

= k1(k2n1)n2

= (k1k2)(n1n2)

= ϕ
(
(k1k2, n1n2)

)
= ϕ

(
(k1, n1)(k2, n2)

)
Thus ϕ is an isomorphism.

Definition 3.1.7. In the situation of the last corollary, G is often called the
internal direct product of K and N .
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The distinction between internal direct product and the usual (external) direct
product of two arbitrary groups G and H is subtle as the next examples show.
The first example shows that the external direct product of two groups is also
the internal direct product of two of its subgroups (in a way that seems perhaps
pedantic). The second example shows the real motivation for distinguishing inter-
nal direct products, they can be rather hidden, and give insight into the structure
of a group.

Example 3.1.8. Let G and H be two groups and consider the external direct prod-
uct G×H. Let G = G× {eH} and similarly H = {eG} ×H. The interesection of
G and H is the identity element of G×H and it is easy to see that every element
of G×H may be written as a product of something in G and H. Thus G×H is
the internal direct product of G and H.

Example 3.1.9. Consider Z6. It has two proper subgroups K = {0, 3} and N =
{0, 2, 4} both of which are normal since Z6 is abelian. It can be seen that everything
in Z6 can be written as a sum of something in K and something in N , and clearly
K ∩N = {0}. Thus Z6 is the internal direct product of H and K. Of course, in
Z6, the subgroup {0, 3} is isomorphic to Z2, and {0, 2, 4} is isomorphic to Z3 and
we know from Corollary 2.3.7 that Z6 is isomorphic to the external direct product
Z2 × Z3. More generally, for m and n coprime, Zmn is the internal direct product
of its subgroups 〈m〉 and 〈n〉.

One can also define the external semi-direct product of of two groups.

Definition 3.1.10. Let N , H be two groups and let ϕ : H −→ Aut(N) be a
homomorphism. Write ϕ(h) as ϕh. Define a new group with elements N ×H and
multiplication defined by

(n1, h1) ∗ (n2, h2) = (n1ϕh1(n2), h1, h2)

This is the external semi-direct product of N and H defined by ϕ and is
written N oϕ H.

The relationship between the internal and external semi-direct product is even
more subtle than that for the internal and external direct product. Consider a
group G with two subgroups N,H with N normal and H not normal and such
that NH = G and N ∩ H = {e}. There is a bijective map from the Cartesian
product N ×H to G taking (n, h) to nh. It is not a homomorphism. But it is true
that in G,

n1h1n2h2 = n1h1n2h
−1
1 h1h2

= n1ϕh1(n2)h1h2
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Where ϕh1 is conjugation by h1. Because N is normal in G, ϕh is an automorphism
of N and, indeed, we have a homomorphism ϕ : H −→ Aut(N) that takes h to
ϕh. Thus, if we use ϕ to to define the external semi-direct product N EϕH we get
an isomorphism with G.

Exercises 3.1.11. The definition of external semi-direct product makes sense!

(a) Verify that (eH , eK) is the identity element.

(b) Show that each element does have an inverse.

(c) Show that the associative law holds.

Exercises 3.1.12. Verify the following are semi-direct products.

(a) Dn
∼= Cnoϕ C2 where ϕ : C2 −→ Aut(Cn) takes the non-identity element of

C2 to the automorphism of Cn taking n to n−1.

(b) Sn = An o 〈(1, 2)〉. What is the map ϕ?

(c) S4 = V oS3 where V is Klein-4 subgroup with elements of the form (a, b)(c, d)
with a, b, c, d distinct elements of {1, 2, 3, 4}. What is the map ϕ?

(d) In GLn(F ), for F a field, let T be the upper triangular matrices with nonzeros
on the diagonal; let U be the upper triangular matrices with 1’s on the
diagonal and let D be the diagonal matrices with nonzero elements on the
diagonal. For n = 2, show that T = U o D. Describe the map ϕ : D −→
Aut(U).

(e) Do the previous problem for arbitrary n.

Proposition 3.1.13. Let N be a normal subgroup of G and let π : G −→ G/N be
the quotient homomorphism. Suppose that there is a homomorphism α : G/N −→
G such that π ◦ α is the identity map on G/N . Then G is the internal direct
product N o α(G/N).

Proof. Let the image of α be H = α(G/N), which is a subgroup of G. By Corol-
lary 3.1.4, we need only show that HN = G and that H ∩N is trivial.

Let g ∈ G. Let h = α ◦ π(g). This is an element of H, since it is in the image
of α. I claim gh−1 ∈ N . This is because

π(gh−1) = π(g)π(h−1) = π(g)π
(
α ◦ π(g−1)

)
= π(g)

(
π ◦ α ◦ π

)
(g−1)

)
= π(g)(π(g−1)

)
= π(g)π(g−1) = eN

Consequently gh−1 = n for some n ∈ N and therefor g = hn. Since g was an
arbitrary element of G we have shown G = HN .

Now suppose that h ∈ H ∩ N . Since h ∈ H, there is some gN ∈ G/N such
that h = α(gN). We know that π ◦ α is the identity on H, so

α
(
π
(
α(g)

))
=
(
α ◦ π

)(
α(g)

)
= α(g) = h.
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On the other hand, since h ∈ N ,

α
(
π
(
α(g)

))
= α

(
π(h)

)
= α(eN) = e.

Consequently, h = e and we have shown H ∩N = {e}.

Exercises 3.1.14. Let F be a field. Let GLn(F ) be the general linear group: n×n
matrices over F with nonzero determinant. Let SLn(F )) be the special linear
group: matrices with determinant 1. Let F ∗I be the nonzero multiples of the
identity matrix. In this problem we investigate the finite fields F and values of n
for which GLn(F ) ∼= SLn(F )× F ∗I.

(a) For the fields F = F3 and F = F5, show that GLn(F ) is a direct product as
above for n odd, but not for n even.

(b) For the field F = F7, show that GLn(F ) is a direct product as above for n
coprime to 6, and is not otherwise.

(c) (Challenge) For which fields Fq and which n is GLn(Fq) a direct product as
above?

Exercises 3.1.15. External semi-direct products of cyclic groups.

(a) Use the definition of external semi-direct product to create the other non-
abelian group of order 12 (besides D6 and A4), Z3oϕZ4 where ϕ is the only
possible map Z4 −→ Aut(Z3) that is not trivial. Let a be the generator for
Z3 and b the generator for Z4. Show the following:

(1) Every element can be represented uniquely as aibj for i ∈ {0, 1, 2} and
b ∈ {0, 1, 2, 3}

(2) The group can be presented as 〈a, b|a3 = b4 = 1, ba = a2b〉
(3) Find the inverse of aibj .

(4) Find a general formula for aibj ∗ ambn. It may be useful to break this
into cases.

(b) Use the definition of external semi-direct product to create the only non-
abelian group of order 21 (the smallest non-abelian group of odd order),
Z7 o Z3. Let a be the generator for Z7 and b the generator for Z3. Show
how to represent, invert, and multiply elements of this group as you did in
the previous problem.

(c) (Challenge Problem) Use the definition of external semi-direct product to
construct semi-direct products Zm o Zn. You will need to start with a
homomorphism ϕ : Zn −→ Aut(Zm). See how many of the small non-abelian
groups you can find in the table of small abelian groups on Wikipedia.
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3.2 Finitely Generated Abelian Groups

In this section we show that the structure of finitely generated abelian groups
is fairly simple. Any finitely generated abelian group is isomorphic to a direct
product of cyclic groups that can be put in a standard, uniquely determined,
format. We proceed in several steps, each subsection below gives a complete story
about a particular class of abelian groups; each extends the result of the previous
subsection to a broader class of abelian groups.

Our first step is to show that a direct product of cyclic groups can be put into a
standard format that elucidates its structure. There are actually two such formats,
one using elementary divisors and the other using invariant factors. In particular,
two groups are isomorphic if and only if their standard formats are the same. Our
next step is to show that any finite abelian group is actually a direct product of
cyclic groups, and it therefore can be placed in the two standard formats. This
result has one very technical lemma whose proof we sketch. Finally, we state and
prove some aspects of the more general result that any finitely generated abelian
group can be written as a direct product of a finite group (with standard formats
above) and a group that is isomorphic to Zr for some integer r.

We will write the group operation additively. For A an abelian group, a ∈ A,
and m an integer, we write mA for a + · · · + a with m summands. Think of ma
as repeated addition, not multiplication. The order of a is the smallest positive
integer m such that ma = 0. One can check that ma + na = (m + n)a and
(mn)a = m(na). If B is a subgroup of A (it is normal since A is abelian) we write
a coset as a+B and the identity element of A/B is 0 +B.

A key tool in this chapter is Corollary 2.3.7, which says that for coprime integers
m and n the group Zmn is isomorphic to Zm × Zn. The corollary says more, that
there is a unique isomorphism that takes [1]mn to

(
[1]m, [1]n

)
, but we only need

the existence of the isomorphism in this section. An easy induction argument
establishes the following result

Proposition 3.2.1. Let m1,m2, . . . ,mt be pairwise coprime positive integers and
let m =

∏t
i=1mi, then

Zm ∼= Zm1 × Zm2 × · · · × Zmt

Products of Cyclic Groups

Let’s start with abelian groups that we understand well, cyclic groups, and direct
products of cyclic groups. The notation in the theorems below is a bit heavy, so
we start with an example.
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Example 3.2.2. Consider the group Z60×Z12×Z8×Z25. Using Proposition 3.2.1,

Z60
∼= Z4 × Z3 × Z5

Z12
∼= Z4 × Z3

Z8
∼= Z8

Z75
∼= Z3 × Z25

Let’s take the direct product of all these factors ordering them by the prime in-
volved (2, 3,or 5) and for each prime, the highest power of that prime first.

Z60 × Z12 × Z8 × Z25
∼= Z8 × Z4 × Z4 (3.1)

× Z3 × Z3 × Z3

× Z25 × Z5

Now, we regroup by combining the highest powers of each prime.

∼= Z8 × Z3 × Z25

× Z4 × Z3 × Z5

× Z4 × Z3

Finally, we have

Z60 × Z12 × Z8 × Z25
∼= Z600 × Z60 × Z12 (3.2)

Both factorizations are of interest: one (3.1) into cyclic groups of prime power
order, the other (3.2) combining the factors prime power factors in a greedy fashion.

The following proofs are just adaptations of the computations in the example
to deal with the general context.

Theorem 3.2.3. Let m1, . . . ,mt be positive integers and A = Zm1 × · · · × Zmt.
Let P = {p1, . . . , ps} be the set of all primes dividing m1m2 · · ·mt and let the mj

have factorizations mj =
∏s
i=1 p

eij
i (allowing some eij = 0). Then

A ∼= A1 × · · · ×As

where Ai = Zei1pi × Zei2pi × · · ·Z
eit
pi .

Furthermore |Ai| = pei where ei =
∑t

j=1 eij.
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Proof. By Proposition 3.2.1, Zmj ∼= Ze1jp1 × · · · × Zesjps . Thus

A = Zm1 × · · · × Zmt
∼= Ze11p1 × · · · × Zes1ps
× Ze12p1 × · · · × Zes2ps

. . .

× Ze1tp1 × · · · × Zestps

Rearranging terms so that the jth column of factors becomes the jth row, and the
ith row becomes the ith column, we have

∼= Ze11p1 × · · · × Ze1tp1
× Ze21p2 × · · · × Ze2tp2

. . .

× Zes1ps × · · · × Zestps
∼= A1 × · · · ×As

The cardinality of Ai is just the product of the cardinalities of its factors. So,
letting ei =

∑t
j=1 eij , we have |Ai| = pei .

Definition 3.2.4. The multiset
{
p
eij
i : i = 1, . . . , s; and j = 1, . . . t

}
is the set of

elementary divisors of A.

Theorem 3.2.5. With the notation of the previous theorem, for each i let fi1 ≥
fi2 · · · ≥ fit be a permutation of the exponents ei1, . . . eit putting them in decreasing

order. For j = 1, . . . , t, let nj =
∏s
i=1 p

fij
i . Then nt | nt−1 | · · · | n1 and A ∼=

Zn1 × · · · × Znt.

Proof. The fact that nj | nj−1 follows from fij ≤ fi,j−1. Revisiting the previous
proof, we enter after the point where we rearranged the factors. In each line we
then permute the eij to have them in decreasing order (fi1, . . . , fit). The final step
is to rearrange again by combining all the largest prime power factors to create
Zn1 and proceeding iteratively with the next largest prime power factors. As with

88



the previous theorem this is just an application of Proposition 3.2.1.

A = Zm1 × · · · × Zmt
∼= Ze11p1 × · · · × Ze1tp1
× Ze21p2 × · · · × Ze2tp2

. . .

× Zes1ps × · · · × Zestps
∼= Zf11p1 × · · · × Zf1tp1
× Zf21p2 × · · · × Zf2tp2

. . .

× Zfs1ps × · · · × Zfstp1
∼= Zf11p1 × · · · × Zfs1ps
× Zf12p1 × · · · × Zfs2ps

. . .

× Zf1tp1 × · · · × Zfstps
∼= Zn1 × · · · × Znt

Definition 3.2.6. The nj (that are not 1) in the previous theorem are called the
invariant factors of A.

Exercises 3.2.7.

(a) Find the elementary divisors and the invariant factors for Z50×Z75×Z136×
Z21000.

(b) Let n1, n2, . . . , nr be integers larger than 1. Under what conditions will
Zn1 × Zn2 × · · · × Znr have r invariant factors?

Exercises 3.2.8. There is a well defined homomorphism Z2400 −→ Zd that takes
[1]2400 to [1]d for any d that divides 2400. Given several divisors of 2400 we can
use the universal property of a direct product 2.3.6 to get a homomorphism into
the direct product of several such groups, for example

Z2400
ϕ−→ Z40 × Z30 × Z16

(a) What is the kernel?
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(b) Find the elementary divisors of (i) Z2400, (ii) Z40 × Z30 × Z16, and (iii) the
kernel of the homomorphism ϕ.

(c) Find the invariant factors of (i) Z2400, (ii) Z40×Z30×Z16, and (iii) the kernel
of the homomorphism ϕ.

Finite Abelian Groups

In the previous section we showed that a product of cyclic groups can be written
in two different forms that illuminate the structure better. One form uses cyclic
groups of prime power order (and gives the elementary divisors of the group) and
the other uses a format that identifies the largest cyclic component and, after
splitting off that component, the next largest cyclic component, and so forth.
This gives the invariant factors of the group. We now want to show that this
classification applies to any finite abelian group.

The first step is to split a group into pieces that are, in a sense, coprime. We
then apply induction to write the group as a direct product of groups that have
prime power order. The difficult step is to show that a group of prime power order
is actually a product of cyclic groups (whose orders are a power of the same prime).

Definition 3.2.9. Let A be an abelian group. For m ∈ N let

mA = {ma : a ∈ A}
A[m] = {a : ma = 0}

For p a prime define the p-torsion subgroup of A to be

A(p) =
{
a ∈ A : ord(a) = pk for some k

}
An abelian group such that A = A(p) is called a p-group.

Exercises 3.2.10.

(a) Prove that mA, A[n] and A(p) are all subgroups of A.

(b) Prove that A(p) = ∪∞i=0A[pi], and that, for A finite, A(p) = A[pk] for some
large enough k.

Proposition 3.2.11. Suppose that A is abelian with |A| = mn and m,n coprime.
Then

(1) mA = A[n]

(2) A is the internal direct product of A[m] and A[n]
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Proof. Let u, v ∈ Z be such that um + vn = 1. Let a ∈ A[n]. Then a = (um +
vn)a = u(ma) + v(na) = m(ua), since we assume na = 0. This shows that
A[n] ⊆ mA. On the other hand, an arbitrary element of mA can be written ma
for a ∈ A. Since |A| = mn, n(ma) = (nm)a = 0, and this shows mA ⊆ A[n] (we
have used Lagrange’s Theorem that the order of a divides the order of the group).

For the second claim of the proposition, we show that A[m] ∩ A[n] = {0} and
that A[m] +A[n] = A. Then, by Corollary 3.1.6, A ∼= A[m]×A[n].

Let a ∈ A. Since a = (mu+ nv)a = m(ua) + n(va) we see that a ∈ mA+ nA,
which by the previous paragraph is equal to A[n] +A[m]. Thus A[m] +A[n] = A.
On the other hand, if a ∈ A[m]∩A[n] then and a = (um+vn)a = u(ma)+v(na) =
0+0. Thus A[m]∩A[n] = {0}. We have shown that A is the internal direct product
of A[m] and A[n].

The next proposition shows that our decomposition is uniquely determined.

Proposition 3.2.12. Let A1, A2, B1 and B2 be finite groups. Suppose that A1 ×
B1
∼= A2 × B2 where everything in Ai has order dividing m and everything in Bi

has order dividing n, with m and n coprime. Then A1
∼= A2 and B1

∼= B2.

Proof. Assume A1 ×B1
∼= A2 ×B2.

m(Ai ×Bi) = mAi ×mBi
= {(0,mb) : b ∈ Bi}
= {0} ×Bi

The first step because m(a, b) = (ma,mb) and the last step because multiplication
by m (coprime to n) gives an automorphism of Bi. Since m(A1×B1) ∼= m(A2×B2)
we get B1

∼= B2. Similarly we show A1
∼= A2.

Corollary 3.2.13. Let |A| = pe11 . . . pess then

A ∼= A[pe11 ]× · · · ×A[pess ] = A(p1)× · · · ×A(ps)

This factorization is unique up to reordering.

Proof. Existence of the factorization follows from Proposition 3.2.11 by induction:

A ∼= A[pe11 ]×A[pe22 p
e3
3 · · · p

es
s ]

∼= A[pe11 ]×A[pe22 ]×A[pe33 p
e4
4 · · · p

es
s ]

and so forth. There is one subtlety though; we have usedA[pe22 ] =
(
A[pe22 p

e3
3 · · · pess ]

)
[pe22 ].

This is easily verified. Any nonzero element of A whose order is a power of p2 is
in each of these groups, and nothing else is.
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Uniqueness follows from a similar inductive application of Proposition 3.2.12

The previous corollary is the first step in the classification of finite abelian
groups. The next step is to classify groups satisfying the following definition.

Definition 3.2.14. Let p be a prime number. An abelian p-group is an abelian
group A in which every element of A has order that is a power of p.

The key lemma follows. Its proof is quite technical and not very illuminating,
so I sketch the proof in [Hun12][Sec 8.2].

Lemma 3.2.15. Let A be an abelian p-group and let a be an element of maximal
order. Then A = K + 〈a〉 and K ∩ 〈a〉 = {0} for some subgroup K of A. Thus A
is isomorphic to the direct product of K and 〈a〉.

Proof. Let a be an element of maximal order in the abelian p-group A; this order
is a power of p. Let K be as large as possible such that K ∩ 〈a〉 = {0}. We want
to show that K + 〈a〉 = A. Then Corollary 3.1.6 says that A ∼= K × 〈a〉.

Suppose b ∈ A \ (K + 〈a〉). Do some tricks to show:

(1) There is a c ∈ A \ (K + 〈a〉) such that pc ∈ K + 〈a〉. [ Take the minimal r
such that prb ∈ K + 〈a〉, then let c = pr−1b.]

(2) There is a d ∈ A \ (K + 〈a〉) such that pd ∈ K. [ Let pc = k + ma, argue
that m = pm′, for some integer m′ using that a has maximal degree in A
and K ∩ 〈a〉 = {0}. Then set d = c−m′a.]

By assumption on K, (K + 〈d〉) ∩ 〈a〉 6= {0}, so there is some k ∈ K, and nonzero
r, s ∈ Z such that k + rd = sa.

Now we consider two cases: If p | r then rd ∈ K and consequently sa ∈ K.
This contradicts K ∩ 〈a〉 = {0}. If p - r then there are u, v such that up+ vr = 1.
Then d = u(pd) + v(rd). The first term is in K and the second in K + 〈a〉, so
d ∈ K + 〈a〉, which is a contradiction.

Summarizing, we assumed K maximal such that K∩〈a〉 = {0}. Supposing the
existence of some b ∈ A \ (K + 〈a〉), we showed there was some d ∈ A \ (K + 〈a〉)
such that pd ∈ K. From the maximality assumption on K, there is some element
of (K + 〈d〉) ∩ 〈a〉, which we can write as k + rd = sa for k ∈ K and r, s ∈ Z.
There are two possibilities, p divides r or not. Both lead to a contradiction. Thus
A must be equal to K + 〈a〉.

Theorem 3.2.16. Let A = A(p) be an abelian p-group. Then A is the direct
product of cyclic groups each of which has order a power of p. Consequently, the
order of A is also a power of p.
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The decomposition is unique (up to reordering). Put another way, two abelian
p-groups are isomorphic if and only if their decompositions have the same number
of factors for each power of p.

Proof. Note first that a non-trivial abelian p-group must have order divisible by
p since Lagrange’s Theorem 2.6.6 says that the order of an element of the group
(which, by assumption, is a power of p) must divide the order of the group. We
will show that the order of an abelian p-group must actually be equal to a power
of p.

We proceed by induction on the largest power of p that divides the cardinality
of the abelian group. Our induction hypothesis for t ≥ 0 is that any abelian p-
group with order that is divisible by pt but not by pt+1 is isomorphic to the direct
product of cyclic groups whose orders are a power of p. An immediate consequence
is that the order of such a group is a power of p, so the order is exactly pt. We
noted above that the induction hypothesis is true for t = 0, in which case the
abelian p-group is trivial.

Let t ≥ 1. Let A be an abelian p-group of cardinality ptm with m not divisible
by p. Using the lemma we can write A as a direct sum A = K + 〈a〉 with K ∩
〈a〉 = {0}. The subgroup 〈a〉 is cyclic of order ps for some s > 0 and therefore
|K| ≤ pt−sm. Applying the induction hypothesis to K, shows that m = 1 and K
is isomorphic to the direct product of cyclic groups whose order is a power of p.
Since 〈a〉 is also cyclic of order ps, we have that A is the direct product of cyclic
groups of order a power of p.

To prove uniqueness (up to reordering) we note first that if two groups have
the same number of factors for each power of p they are isomorphic. We will write
factorizations by writing the factors in increasing powers of p as follows

A ∼= (Zp)k1 × (Z2
p)
k2 × · · · × (Zrp)kr

We now show that we can recover the ki by operating on A. In other words,
two factorizations, one with k1, k2 . . . and one with m− 1,m2, . . . are isomorphic
if and only if ki = mi.

We can recover the ki iteratively. Since logp(|Znp |) = n, we have logp(|A|) =∑r
i=1 iki. Notice that pn−1Znp ∼= Zp and pkZnp is trivial for k ≥ n. Thus the

subgroup pr−1A is isomorphic to

pr−1A ∼= (Zp)kr

Thus we have logp(|pr−1A|) = kr. Similar computations for piA with i = r−2, r−
3, . . . , 1 allows one to recover the other ki. (Try it as an exercise!)
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From Corollary 3.2.13 and the previous theorem we obtain the fundamental
theorem for finite abelian groups..

Theorem 3.2.17 (Fundamental Theorem of Finite Abelian Groups). Let A be an
abelian group of order pe11 . . . perr . Then A is a direct product of cyclic groups, each
having order a power of one of the pi. If we write

A(pi) ∼= Z
p
ei,1
i
× Z

p
ei,2
i
× . . .Z

p
ei,si
i

then for each i,
∑si

`=1 ei,` = ei. The decomposition is unique, up to reordering.

Exercises 3.2.18. Consider the following problems for n = 72000 and n = 84000.

(a) Classify all abelian groups of order 84,000.

(b) Let n = 72, 000. How many abelian groups are there of order n?

(c) How many of these abelian groups have 2 invariant factors?

(d) How many abelian groups are there of order p6q5r4 where p, q, r are distinct
primes?

(e) How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check your answer
against the response to the previous question.

Exercises 3.2.19. Let p, q and r be prime and let n = p6q2r3.

(a) How many abelian groups are there of order n?

(b) How many of these groups have exactly two invariant factors?

Exercises 3.2.20. Here is another approach to proving uniqueness in the classifica-
tion of finite abelian groups.

(a) Show that pkZpn ∼= Zpn−k for k ≤ n. Seen another way, there is an exact
sequence

0 −→ Zpm
·pk−→ Zpk+m −→ Zpk −→ 0

(b) Show that pk−1Zpn
/
pkZpn ∼= Zp for k ≤ n.

(c) Suppose that A ∼= (Zp)k1 × (Zp2)k2 × · × (Zpn)kn . Show that pt−1A/ptA ∼=
(Zp)kt+···+kn .

(d) Conclude the uniqueness part of the classification of finite abelian groups: If

(Zp)k1 × (Zp2)k2 × · × (Zpn)kn ∼= (Zp)m1 × (Zp2)m2 × · × (Zpn)mn

then ki = mi.
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Finitely Generated Abelian Groups

Our final step is to generalize the results on classification to finitely generated
abelian groups. The strategy is simple. Let A be a finitely generated group. The
torsion subgroup of A is the set of elements of finite order. The first proposition
below shows that it is indeed a subgroup of A. The torsion subgroup has to be a
finite group, since it is finitely generated, so it is classified by the results above.
The next big step is to show that A has a subgroup that is isomorphic to Zr
such that A is the direct product of that subgroup and Tor(A). Thus, a finitely
generated abelian group is isomorphic to a finite direct product of cyclic groups
that are either infinite of prime power order.

Proposition 3.2.21. Let A be an abelian group. Let

Tor(A) = {a ∈ A : a has finite order}

(1) Tor(A) is a normal subgroup of A.

(2) All elements of A/Tor(A) (except the identity) have infinite order.

Proof. This was Exercise 2.10.4. Let T = Tor(A). Clearly 0 ∈ T , so T is nonempty.
If a ∈ T has order m then so does −a = (m − 1)a. If b is another element in T
and it has order n, then a+ b has order at most mn since

mn(a+ b) = (mn)a+ (mn)b = n(ma) + n(mb) = 0

Thus T is closed under inversion and multiplication, so it is a subgroup of A.
Normality is immediate since A is abelian.

If b+ T has finite order m in A/T then

mb+ T = m(b+ T ) = 0 + T

This shows that mb ∈ T , so mb has some finite order n in A. Then (nm)b =
n(mb) = 0, so b itself has finite order. Thus b ∈ T and b+ T = 0 + T . So the only
element of finite order in A/Tor(A) is the identity element.

Definition 3.2.22. A group that has no elements of finite order, other than the
identity, is said to be torsion free.

Let A be an abelian group and let S = {a1, a2, . . . , ar} be a set of elements
in A. We say that the elements of S are independent when for any integers
m1, . . .mr that are not all zero, m1a1 +m2a2 + · · ·+mrar 6= 0.

A free abelian group of rank r is a group that is isomorphic to Zr. It will
have r elements that are independent and also generate A. We will generally use
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ei for the element of Zr that is 1 in the ith component and 0 elsewhere. Borrowing
from the language of vector spaces, we say that the ei are the standard basis for
Zr.

Proposition 3.2.23. The rank of a finitely generated free abelian group is unique.

Proof. Let A ∼= Zr. Then A/2A ∼= Zr/(2Zr) ∼= (Z2Z)r. The final isomorphism
comes from Theorem 2.7.10 and the observation that 2Zr = 2Z × 2Z × · · · × 2Z
(both containments are easy to show). Since (Z2Z)r has 2r elements, we may
recover the rank by computing log2(|A/2A|).

Exercises 3.2.24.

(a) Let A be an abelian group. Suppose f : A→ Z is a surjective homomorphism
with kernel K. Show that A has an element a such that A is the internal
direct product K × 〈a〉.

(b) In the previous problem, suppose f is not surjective but f(A) = nZ for some
n ∈ N. Show that it still holds that there is an element a ∈ A such that A
is the internal direct product K × 〈a〉.

(c) Suppose that A is torsion free and mA ∼= Zr. Show that A ∼= Zr.
We need two results before proving that a finitely generated torsion free abelian

group is actually isomorphic to Zr for some r.

Proposition 3.2.25. Let A ≤ Zr. Then A is isomorphic to Zs for some integer
s ≤ r.

Proof. We proceed by induction on r. For r = 1 we already know the subgroups
of Z. They are the trivial group (rank 0) and nZ, which is isomorphic to Z.

Assume the statement of the theorem is true for integers less than r. Let
A ≤ Zr and let ei be the element of Zr that is 1 in the ith component and 0
elsewhere. Consider projection onto the rth component Zr π−→ Z. The kernel of
this map is Zr−1 with generators {e1, . . . , er−1}. Let A

ι−→ Zr be the embedding of
A in Zr and consider the composite π ◦ ι. The kernel of this map is B = A∩Zr−1.
By the induction hypothesis, B is isomorphic to Zs for some integer s ≤ r − 1.

If B = A we are done. Otherwise, π ◦ ι has image nZ for some n > 0. Let
a ∈ A be a preimage of n. By Exercise 3.2.24(b) we have A ∼= B× 〈a〉 ∼= Zs×Z =
Zs+1.

Proposition 3.2.26. Let A be a finitely generated, torsion-free abelian group.
Then A is a free abelian group of finite rank.

Proof. Let b1, . . . , br be a maximal independent set in A. These elements are
independent and there is no set of r + 1 elements in A that is independent.
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LetB be the subgroup ofA generated by b1, . . . , br, that isB = {
∑r

i=1mibi : mi ∈ Z}.
Consider A/B. I claim that it is a torsion group; every element has finite order.

For any a ∈ A, there are integers m0, . . . ,mr such that m0a+m1b1 +m2b2 +
· · · + mrbr = 0, for otherwise {a, b1, . . . br} would be an independent set, contra-
dicting maximality of {b1, . . . br}. Furthermore m0 is not zero, since {b1, . . . br} is
independent, so m0a is a nonzero element of B. Thus for any a ∈ A there is an
m0 such that m0(a+B) = m0a+B = 0 +B.

We have shown every element of A/B has finite order. Since it is also finitely
generated it is a finite group. Thus the exponent of A/B (the lcm of the orders
of elements of A/B) is some finite m ∈ N. Then, m(A/B) is the trivial subgroup
{0 +B} inside A/B. This shows mA is a subgroup of the free abelian group B.
Thus by Proposition 3.2.25 mA is free abelian of rank s ≤ r, where r is the rank
of B. Applying Exercise 3.2.24(c) we have that A itself is free of rank s. This
concludes the proof.

It is worth noting that, since B ≤ A, Proposition 3.2.25 says that the rank of
B is at most the rank of A, so r ≤ s. We already showed s ≤ r, so A and B have
the same rank.

The proof of the following theorem is similar to Proposition 3.1.13. Exer-
cise 3.2.24(a) was a special case (with r = 1).

Proposition 3.2.27. Let A be a finitely generated abelian group. and let ϕ : A −→
Zr be a surjective homomorphism with kernel K. There exists a subgroup B ≤ A
such that ϕ restricted to B is an isomorphism. Furthermore A = K ×B (We use
= rather than ∼= because A is the internal direct product of the two subgroups).

Proof. Let b1, . . . , br ∈ A map to the elements ei of Zr. Let B = 〈b1, . . . , br〉 =
{m1b1 + · · ·+mrbr : mi ∈ Z}. We know that the bi are independent, because
their images in Zr are independent. In other words, since ϕ is a homomorphism,∑r

i=1mibi = 0 would imply that
∑r

i=1miei = 0. The latter is only true if all mi

are zero. Thus ϕ|B is injective. Furthermore ϕ : B −→ Zr is surjective since the
ei are in the image and they generate Zr. Thus ϕ|B is an isomorphism.

The conclusion that now follows from Proposition 3.1.13, but we will prove it
directly by using Corollary 3.1.6. The argument above shows that K ∩ B = {0}.
We will show K +B = A, which gives A ∼= K ×B.

Let a ∈ A and let ϕ(a) =
∑r

i=1miei. Let b =
∑r

i=1mibi and consider a− b. It
is easy to see that ϕ(a − b) = 0 so a − b = k for some k ∈ K. Thus a ∈ K + B.
Since a was arbitrary A = K +B.
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Theorem 3.2.28. Let A be a finitely generated abelian group. There is a unique
integer r ≥ 0 such that A has a subgroup B that is a free abelian group of rank r.
For any such B, A is the internal direct product of Tor(A) and B. Furthermore
Tor(A) is a finite abelian group, so it is the direct product of cyclic groups of prime
power order.

Proof. Proposition 3.2.21 shows that A/Tor(A) is torsion free. Proposition 3.2.26
shows that A/Tor(A) must then be free of some uniquely defined rank r. Proposi-
tion 3.2.27 shows that A has a subgroup B that maps isomorphically to A/Tor(A)
and that A = Tor(A)×B.

Finally, we note that A is finitely generated and the quotient group A/B is
isomorphic to Tor(A). Thus Tor(A) is finitely generated and a torsion group.
Therefore it is finite and is classified by Theorem 3.2.17, Tor(A) is also finitely
generated.

Exercises 3.2.29. Infinitely generated abelian groups can be more complicated than
finite ones. Consider the group Q/Z.

(a) On a number line, sketch a region that contains exactly one element for each
equivalence class of Q/Z.

(b) Show that for any integer n there is an element of order n in Q/Z.

(c) How many elements of order n are there in Q/Z?

(d) Show that every element has finite order.

(e) Show that every nontrivial cyclic subgroup is generated by 1
n for some integer

n > 1.

(f) Show that Q/Z is not finitely generated as an abelian group.

(g) Show that Q/Z cannot be written as a direct product of 〈a〉 and another
group H for any nonzero a ∈ Q/Z.

3.3 Simple Groups and the Classification of Finite Groups

In the previous section we saw that finite abelian groups have a very simple struc-
ture; they are direct products of cyclic groups, each having order a power of a
prime. In this section we take steps to understand the the classification of arbi-
trary finite groups.

The model for classification is unique factorization of integers: Every positive
integer is the product of prime numbers in a unique way. Finite abelian groups
have a somewhat more complicated factorization because the constituents of the
unique factorization may involve Zpr for arbitrary r. So, Zp × Zp and Zp2 are
distinct even though they have the same number of elements.
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The classification of finite groups is vastly more complicated than the classi-
fication of finite abelian groups. We would like to say that every finite group is
“built” from a set of groups that are analogous to the prime numbers, indivisible
themselves. The “building” process is much more complicated then simply form-
ing a direct product. As we have seen, for example, S3 is the semi-direct product
Z3oZ2 (with the action of Z2 on Z3 being a 7→ −a), while Z6 is the direct product
Z3×Z2. We will consider S3 as built from the groups Z2 and Z3, just in a different
way than Z6 is built, so S3 and Z6 have the same constituent parts, but a different
pasting together of the parts.

As another example consider the quaternion group Q, which is not even a
semi-direct product. We will say that it is built from 3 copies of Z2 (as are all
groups of order 8). The reasoning is this: Q = {±1,±i,±j,±k} has a normal
subgroup generated by i with 4 elements. The quotient Q/〈i〉 is isomorphic to
Z2. That normal subgroup generated by i is isomorphic to Z4, and has a proper
normal subgroup generated by i2 that is isomorphic to Z2. The quotient 〈i〉/〈i2〉
is isomorphic to Z2. We have what is called a composition series

〈1〉E 〈i2〉E 〈i〉EQ

Each subgroup is normal in the next in the sequence. Furthermore, the quotients
in this case are Z2 at each step, and Z2 is a group that has no normal subgroup
except for the group itself and the trivial group.

Definition 3.3.1. A group G is simple when the only normal subgroups of G
are 〈eG〉 and G.

A composition series for a group G is a sequence of subgroups
G0 = 〈eG〉, G1, G2, . . . , Gn = G such that Gi is a normal subgroup of Gi+1 and
Gi+1/Gi is simple. The simple quotients are called composition factors of G.
We will write

G = G0 EG1 EG2 E . . . Gn−1 EGn = G

The length of the composition series is n.

Proposition 3.3.2. The only simple finite abelian groups are Zp for p prime.

Proof. We have already shown that every finite abelian group is isomorphic to the
direct product of cyclic groups of prime power order. But Zpr is not simple. It is
contructed from r copies of Zp. There is in fact a unique composition series

〈0〉E 〈pr−1〉E 〈pr−2〉E . . . 〈p2〉E 〈p〉E 〈1〉 = Zpr
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Here are the two big theorems on classifying finite groups. The first is essen-
tially a uniqueness theorem about the composition factors of a group.

Theorem 3.3.3 (Jordan Holder). Suppose G has two composition series

〈eG〉 = G0 EG1 EG2 EG3 . . . Gn−1 EGn = G

〈eG〉 = G′0 EG
′
1 EG

′
2 EG

′
3 . . . G

′
m−1 EG

′
m = G

Then m = n and the lists of simple groups from the two series, G1/G0, . . . , Gn/Gn−1
and G′1/G

′
0, . . . , G

′
m/G

′
m−1 are the same up to reordering.

The proof takes several steps and is a bit technical, so we refer to skip it here.
The second big theorem identifies all the simple groups. It was a massive

project in the late 20th century. See the Wikipedia article.

Theorem 3.3.4 (Finite Simple Groups). Every finite simple group is isomorphic
to one of the following:

(1) a cyclic group of prime order, Zp,

(2) an alternating group An, for n ≥ 5,

(3) a group of Lie type,

(4) one of 27 “sporadic groups” (including the Tits group).

We have already shown that Zp is simple. In the rest of this section we get
halfway through the identification of simple groups ;-) by proving that An is simple
for n ≥ 5. We start with two simple lemmas, then prove A5 is simple, then extend
by induction to An for n > 5.

Lemma 3.3.5. Let n ≥ 4. If N EAn and N contains a 3-cycle then N = An.

Proof. Suppose for simplicity (1, 2, 3) ∈ N . Let a ∈ {4, . . . , n}. Conjugate with
(1, 2)(3, a) to get another element of N .

(1, 2)(3, a)(1, 2, 3)(1, 2)(3, a) = (2, 1, a) ∈ N

Now for b 6= 1, 2, a conjugate with (1, a)(2, b)

(1, a)(2, b)(1, a, 2)(1, a)(2, b) = (a, 1, b) ∈ N

Finally, the same trick can be used to give an arbitrary (a, b, c) ∈ N . We know
from Exercise 2.4.17 that the 3-cycles generate An, so N = An.

100

https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups


Lemma 3.3.6. Let N E An with n ≥ 5. If N contains a product of two distinct
transpositions then N = An.

Proof. Let σ = τ1τ2 ∈ N . If τ1 and τ2 do not have disjoint support then their
product is a 3-cycle, and we can apply the last lemma. Suppose they have disjoint
support, σ = (a, b)(c, d). Since n ≥ 5 there is another element in {1, . . . , n}, call it
x. Since N is normal, conjugating gives another element of N ,

(a, b, x)
(
(a, b)(c, d)

)
(a, x, b) = (x, a)(c, d) ∈ N.

Now take the product of the two elements of N that we have identified,(
(a, b)(c, d)

)(
x, a)(c, d)

)
= (a, x, b) ∈ N

Since N has a 3-cycle, N = An by the previous lemma.

Proposition 3.3.7. A5 is simple.

Proof. Let N be a non-trivial normal subgroup in A5. Let σ be an element of
N that is not the identity and consider its signature. The possibilities are 2, 2, 1
or 3, 1, 1 or 5. In the lemmas above, we have shown that if σ is a product of
disjoint transpositions, or if it is a 3-cycle, then N = An. Suppose the 5-cycle
σ = (a, b, c, d, f) is in N and let δ = (a, b, c). Note that σ−1(δσδ−1) ∈ N because
the conjugation of σ by an element of An lands in N , and N is closed under
multiplication. On the other hand,

(σ−1δσ)δ−1 = (b, c, d)(c, b, a)

= (a, d, b)

This shows N contains a 3-cycle, so N = An.

Theorem 3.3.8. An is simple for n ≥ 5.

Proof. We proceed by induction, the case n = 5 has been established. Assume that
Ai is simple for i < n; we’ll prove that An is simple. We start with several obser-
vations about Gi = {σ ∈ An : σ(i) = i}. First, Gi is a subgroup and Gi ∼= An−1.
Second, the Gi are all conjugate subgroups in An since Gi = (1, i, 2)G1(1, 2, i)
(check!). Finally, we show in the next paragraph that An = 〈G1, . . . , Gn〉.

Any σ ∈ An can be written as a product of an even number of transpositions.
Since n ≥ 5, the product of a pair of transpositions must fix some i, and is
therefore in Gi. For example (1, 2)(3, 4) ∈ G5. Pairing off consecutive terms in
the factorization of σ we see that σ can be written as a product of elements in the
groups Gi. Thus An = 〈G1, . . . , Gn〉.
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The strategy now is to show that if N is normal in An with N 6= {id} then
N ∩ Gi 6= {id} for some i. This in turn, by the following argument, implies that
N = An. By the induction hypothesis, each Gi is simple. Since N ∩ Gi is a
nontrivial normal subgroup of Gi, we have N ∩Gi = Gi. We noted above that the
Gi are conjugate, so for any j there is some π ∈ An such that Gj = πGiπ

−1. But
then

Gj = πGiπ
−1

= π(N ∩Gi)π−1

= (πNπ−1) ∩ (πGiπ
−1)

= N ∩Gj

Since N ∩Gj = Gj for all j and the Gj generate An we have N = An.
Finally, to complete the proof, we will show that for a nontrivial N E An we

must have N ∩ Gi 6= {id} for some i. Suppose that N contains an element σ
whose cycle decomposition has a cycle of length at least 3; say σ(a) = b, σ(b) = c
with a, b, c distinct. Let d, f be different from a, b, c (we are using n ≥ 5) and
let τ = (a, d, f). Then (τστ−1)σ−1 ∈ N and straightforward computation shows
τστ−1σ−1(c) = c. This shows that N ∩Gc 6= {id} and therefore, by the previous
paragraph, that N = An.

If N contains no element whose cycle decomposition has a cycle of length at
least 3, then all elements of N are products of disjoint transpositions. Suppose σ
is such a nontrivial element of N . We may assume that σ doesn’t fix anything, for
we have already shown this would imply An = G. We are assuming n ≥ 6, so σ
has at least 3 transpositions σ = (a, b)(c, d)(f, g) · · · . Conjugate by τ = (a, b)(c, f)
and multiply by σ−1 and we have (τστ−1)σ−1 ∈ N and τστ−1σ−1(b) = b. As
above this implies that N = An.

Thus for n ≥ 5, any normal subgroup of An is either trivial or An itself.

Exercises 3.3.9. This problem fleshes out some details in the proof of Theorem
3.3.8: An is simple for n > 5.

(a) Within the alternating groupAn for each i = 1, . . . , n, letGi = {σ ∈ An : σ(i) = i}.
Show that Gi is a subgroup of An.

(b) Find a π ∈ An such that each Gi = πGjπ
−1.

(c) Justify the statement in the fourth paragraph of the proof of 3.3.8 “Then
(τστ−1)σ−1 ∈ N and straightforward computation shows τστ−1σ−1(c) = c.”

(d) Justify the statement in the fifth paragraph of the proof of 3.3.8 “(τστ−1)σ−1 ∈
N and τστ−1σ−1(b) = b.”
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3.4 Free groups, generators and relations
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Chapter 4

Rings

Of the three main topics in this book—groups, rings, and fields—the study of rings
will probably be the most familiar to the reader. The first section of Chapter 1 con-
cerned the protypical ring, the integers. The main properties examined—quotients
and remainders, divisibility, prime numbers, factorization—are familiar from grade
school. At the end of that chapter, these properties are extended to the polynomial
ring F [x] for F a field. Polynomials over the rational numbers, Q, are a major
portion of the secondary school curriculum, although the focus is on the geom-
etry of solutions to polynomial equations more than algebraic properties. Still,
the division of polynomials and factorization do play an important role in the
curriculum.

In this chapter, we deal with general rings, with the caveat that multiplication
is assumed to be commutative. The special roles of the integers and of polynomial
rings will be evident, and the properties of divisibility and factorization are major
themes. The two GCD Theorems 1.1.4 and 1.3.3 involve a construction that also
plays a major role: the GCD of two integers is a linear combination of the two
and the GCD of two polynomials is a polynomial combination of the two. Ideals
are subsets of a ring that generalize the construction of linear/polynomial combi-
nations of two elements. Ideals are used to define quotient rings in Section 4.4.
That following section presents the relatively straightforward generalizations of
the isomorphism theorems for groups 2.7.9 2.9.1 3.1.3 and of the related Factor
Theorem 2.7.11 and Correspondence Theorem 2.9.2. Key properties of ideals and
the relationship to properties of the quotient rings are studied in Section 4.6. The
culminating topic of this Chapter is rings of fractions 4.7, which extends the tech-
niques used to derive the rational numbers from the integers.
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4.1 Rings

In this section we recall the definition of a ring and introduce three particular
types of rings: fields, integral domains, reduced rings. The integers and F [x]
provide ways to construct examples and non-examples of these three types of rings
using the modular arithmetic introduced in Sections 1.1 and 1.3.

Definition 4.1.1. A ring is a set R, with two operations + and ∗ that satisfy the
following properties.

(1) + and ∗ are both associative. That is (a+b)+c = a+(b+c) and a∗ (b∗c) =
(a ∗ b) ∗ c.

(2) + and ∗ are both commutative. That is a+ b = b+ a and a ∗ b = b ∗ a.

(3) + and ∗ both have identity elements. There is some element in R, that we
call 0, such that a+ 0 = a, and there is an element, that we call 1, such that
a ∗ 1 = a.

(4) + admits inverses. That is, for each a ∈ R there is some other element, that
we write −a, such that a+ (−a) = 0.

(5) ∗ distributes over +. That is a ∗ (b+ c) = a ∗ b+ a ∗ c.

A few comments are in order. Strictly speaking, the definition above is for a
commutative ring with identity. The modifier “commutative” is referring to
commutativity of multiplication, and “with identity” is referring to the multiplica-
tive identity. There is a rich study of rings where multiplication is non-commutative
(for example the ring of n× n matrices over R, see Section 4.3), but treating the
subject would spread our efforts too thinly. It is common when treating only com-
mutative rings to simplify the terminology at the outset as we do here: A ring for
us is assumed to be commutative and have an identity.

One may also say that a ring R is a commutative group under + and that
R∗ = R \ {0} is a commutative monoid (look it up!) under ∗, with the additional
property that ∗ distributes over +.

One can show by induction that a sum of several terms (or a product of several
terms) may be computed in any order and that r ∗ (a1 + a2 + · · ·+ an) = r ∗ a1 +
r ∗ a2 + · · ·+ r ∗ an.

There are a bunch of little results one should verify. Since any ring R is
a group under + we already know that the additive identity 0 is unique and
that the additive inverse of r ∈ R is unique (we write it as −r). We know that
−(−r) = r and that for s ∈ R, −(r + s) = (−r) + (−s) (using commutativity of
+). Additionally we have the following properties. Proofs are left as an exercise.
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Proposition 4.1.2. Let R be a ring and r, s ∈ R

(1) For an integer m, we can make sense of mr via(
1 + 1 + · · ·+ 1︸ ︷︷ ︸

m terms

)
∗ r = r + r + · · ·+ r︸ ︷︷ ︸

m terms

(2) For any r ∈ R, r ∗ 0 = 0.

(3) The multiplicative identity element 1 is unique.

(4) The additive inverse and multiplication operate as expected.

• r ∗ (−s) = −(r ∗ s)
• (−r) ∗ (−s) = r ∗ s

We haven’t excluded the possibility that 1 = 0. In this case for any r ∈ R,
r = r ∗ 1 = r ∗ 0 = 0. Thus we have a unique situation, a ring that has just one
element. We call it the trivial ring.

We will write the product without the multiplication symbol when there is no
concern about ambiguity, that is rs instead of r ∗ s. But for clarity and emphasis
on the basic properties of a ring, we will continue to explicitly show the product
symbol in this section.

There are three special types of elements in a ring, and, based on their existence
or not, three special types of rings.

Definition 4.1.3. An element u of a ring R is a unit when there is another
element v such that u ∗ v = 1. An element a of a ring R is a zero-divisor when
a 6= 0 and there is some b 6= 0 in R such that a ∗ b = 0. An element a of a ring R
is nilpotent when there exists some positive integer n such that an = 0.

Definition 4.1.4. A field is a nontrivial ring in which every nonzero element is
a unit. An integral domain is a nontrivial ring that has no zero-divisors. A
nontrivial ring is reduced if it has no nilpotent elements other than 0.

Exercises 4.1.5. Prove the results in Proposition 4.1.2, and in addition prove the
following.

(a) The inverse of a unit is unique.

(b) The inverse of a unit is also a unit.

(c) A unit cannot be a zero divisor.

(d) A nilpotent element is either 0 or a zero-divisor.

Exercises 4.1.6. Cancellation in integral domains.
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(a) Let R be an integral domain. Show that the cancellation law holds: If
ar = as then r = s.

(b) Let R be an integral domain that is finite. Show that R is a field. (For a
nonzero a ∈ R, consider the function R −→ R that takes r to a ∗ r. Use the
cancellation law to show injectivity.)

The Integers and F [x] for F a Field

We can now fully appreciate the integers Z, having ignored multiplication when
we studied the integers as a group. The integers, the number system we learn in
elementary school, form the first example of a ring. One of the key properties of
the integers (used in solving a quadratic equation!) is that ab = 0 implies a = 0 or
b = 0. In terms defined above, Z has no zero-divisors, so it is an integral domain.

Let us now turn to modular arithmetic, which we introduced in Section 1.1. We
will use [a]n for the equivalence class of a modulo n and we will omit the subscript
n when the modulus is obvious. The following expands on Exercise 1.3.10.

Theorem 4.1.7 (Units, Zero Divisors in Z/n). Let n ≥ 2 be an integer and let a
be an integer.

(1) [a]n is a unit iff gcd(a, n) = 1.

(2) [a]n is a zero divisor iff 1 < gcd(a, n) < n.

In particular, an element of Z/n is either 0, or a unit, or a zero-divisor, and these
are mutually exclusive.

Proof. Let d = gcd(a, n). There are three mutually exclusive cases, d = 1, d = n
and 1 < d < n.

If d = 1 then, by the GCD Theorem 1.1.4 there are integers u, v such that
ua+ vn = 1. Reducing modulo n we have

[u]n ∗ [a]n + [v]n ∗ [n]n = [1]n

[u]n ∗ [a]n = [1]n

so [u]n is the multiplicative inverse of [a]n and [a]n is a unit in Z/n.
If d = n, then [a]n = [0]n.
If 1 < d < n then a = db and n = dc for some integers b and c with c < n.

Then [c]n ∗ [a]n = [c]n ∗ [db]n = [cd]n ∗ [b]b = [n]n ∗ [b]n = [0]n. But [a]n 6= [0]n and,
since c < n, [c]n 6= [0]n. Thus [a]n is a zero divisor.

We are particularly interested in the following special case, to which we will
return in depth later.
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Corollary 4.1.8. Let p be a prime number. Then Z/p is a field; every nonzero
element has an inverse.

When working with the integers modulo a prime we usually use the notation
Fp instead of Z/p to emphasize that we have a field.

A general theme emphasized in these notes is the similarity between the integers
and a polynomial ring over a field F [x]. We have similar results when working
modulo a polynomial as we did for modular arithmetic.

Theorem 4.1.9 (Units, Zero Divisors in F [x]/m(x)). Let F be a field and let m(x)
be a polyomial of degree δ > 0. Let a(x) ∈ F (x) and let [a(x)] be its congruence
class modulo m(x).

(1) [a(x)] is a unit iff gcd(a(x),m(x)) = 1.

(2) [a(x)] is a zero divisor iff gcd(a(x),m(x)) has degree greater than 0 and less
than d.

In particular, an element of F [x]/m(x) is either 0, or a unit, or a zero-divisor,
and these are mutually exclusive.

Proof. Let d(x) = gcd(a(x),m(x)). There are three mutually exclusive cases,
d(x) = 1, d(x) = m(x) and 0 < deg(d(x)) < deg(m(x)). These lead to [a(x)] a
unit, [a(x)] = [0] and [a(x)] a zero divisor, respectively. The proof for each case is
entirely similar to that for the integers.

As with the integers, the following case is of special interest and we will return
to it in depth later.

Corollary 4.1.10. Let m(x) be an irreducible polynomial in F [x] for F a field.
Then every nonzero element in F [x]/m(x) has an inverse, so F [x]/m(x) is a field.
Conversely, if m(x) is reducible, F [x]/m(x) is not even an integral domain.

Exercises 4.1.11.

(a) Find the nilpotent elements of Z/8, of Z/12, and of Z/30.

(b) Under what conditions on n does Z/n have nonzero nilpotent elements?

(c) Identify the nilpotent elements of Z/n using the unique factorization of n.

(d) Let F be a field and m(x) ∈ F [x]. Under what conditions on m(x) does
F [x]/m(x) have nonzero nilpotent elements? Identify the nilpotents a(x) ∈
F [x]/m(x) using unique factorization into irreducibles of m(x) and a(x).
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4.2 Ring Homomorphisms

As with groups, the functions that preserve structure on rings are of primary
interest. We first treat subrings, then introduce homomorphisms.

Definition 4.2.1. Let R be a ring. A subset T ⊆ R is a subring of R when T is
an additive subgroup of R, T is closed under multiplication, and T contains 1R.

Example 4.2.2. The ring of integers Z is a subring of Q. The rings Z/n have
no proper subrings because of the requirement that the unitary element, 1, be
contained in a subring. Adding 1 to itself will give all of Zn.

The polynomial ring F [x] for F a field has many subrings: F itself, any subring
of F , and subrings generated by a polynomial. For example, F [x2] would contain
all polynomials in which each term has even degree. One can check that it is indeed
a subring of F [x].

Exercises 4.2.3. Suppose R,S are subrings of a ring T .

(a) Show that R ∩ S is also a subring of T .

(b) If R and S are integral domains, show that R∩S is also an integral domain.

(c) If R and S are fields, show that R ∩ S is also a field.

(d) More generally, show that for any subset A of T , that the intersection of all
rings containing A is a subring of T .

(e) Similarly, show that for any subset A of T , that the intersection of all fields
containing A is a subring of T .

(f) Give an example to show that R ∪ S may not be a ring.

Definition 4.2.4. Let R,S be rings. A funtion ϕ : R −→ S is a ring homomor-
phism when

(1) ϕ is a homomorphism of the additive groups R,+R and S,+S , and

(2) ϕ(1R) = 1S , and

(3) for r1, r2 ∈ R,

ϕ(r1 ∗R r2) = ϕ(r1) ∗S ϕ(r2)

Notice that the operation on the left-hand side is in R and the operation ∗ on
the right-hand side is in S. When we want to be careful we specify the ring for the
operation as we did here, but generally this is left to the reader to infer. We say
ϕ respects addition, multiplication and the identity element. That is, it respects
the ring structure. Recall from group theory that it is sufficient to check that

109



a function ϕ respects the group operation to ensure that ϕ is a homomorphism.
Thus to check if ϕ : R −→ S is a ring homomorphism one verifies that ϕ(1R) = 1S ,
ϕ(r1 +R r2) = ϕ(r1) +S ϕ(r2), and ϕ(r1 ∗R r2) = ϕ(r1) ∗S ϕ(r2).

If S is a subring of R then there is a homomorphism, the inclusion homo-
morphism, from S to R.

Proposition 4.2.5. Let R,S, T be rings. If ϕ : R −→ S and θ : S −→ T are ring
homomorphisms then the composition θ ◦ ϕ is also a ring homomorphism.

The proof is left as an exercise.

Definition 4.2.6. The kernel of a ring homomorphism ϕ : R −→ S is the preim-
age of 0S ; that is {r ∈ R : ϕ(r) = 0S}. A homomorphism that is injective is called
an embedding. A homomorphism that is a bijection (injective and surjective) is
called an isomorphism.

From group theory we know that the kernel is a normal subgroup (since addi-
tion in rings is commutative, any subgroup is normal). The kernel has an additional
important property, which is item (3) in the following theorem.

Theorem 4.2.7. Let ϕ : R −→ S be a homomorphism of rings and let K be the
kernel.

(1) The image of R is a subring of S.

(2) ϕ is injective if and only if K = {0R}.

(3) For any r ∈ R and any k ∈ K, r ∗R k ∈ K.

Proof. We know that ϕ(R) is a subgroup of S. From the requirement that ϕ(1R) =
1S we have 1S ∈ ϕ(R). To show that ϕ(R) is closed under multiplication, let ϕ(r1)
and ϕ(r2) be arbitrary elements of ϕ(R). Then ϕ(r1) ∗S ϕ(r2) = ϕ(r1 ∗R r2), and
this is in ϕ(R).

For the properties of the kernel, note first that if ϕ is injective there can only
be one element that maps to 0S , and that is 0R. Conversely, suppose K = {0R},
and suppose ϕ(r) = ϕ(r′). Then ϕ(r − r′) = ϕ(r) − ϕ(r′) = 0S . Since the kernel
is trivial, r − r′ = 0R so r = r′. This establishes injectivity.

Let k ∈ K and r ∈ R. We have

ϕ(r ∗R k) = ϕ(r) ∗S ϕ(k) = ϕ(r) ∗S 0S = 0S

Thus r ∗R k ∈ K.
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As with isomorphisms of groups, the isomorphisms between rings set up an
equivalence relation. Every ring is clearly isomorphic to itself via the identity
map. The following theorem establishes symmetry and transitivity.

Theorem 4.2.8. If ϕ : R −→ S is an isomorphism then ϕ−1 is also an isomor-
phism. The composition of two isomorphisms is an isomorphism.

Proof. Let ϕ : R −→ S be an isomorphism of rings. Then ϕ is a bijection, so ϕ−1

is also a bijection from S to R. We must show it is a homomorphism. Since ϕ is a
homomorphism, ϕ(1R) = 1S and therefore ϕ−1(1S) = 1R (since ϕ is injective, this
is the sole preimage).

To show ϕ−1 respects addition and multiplication, let s, s′ be arbitrary elements
of S. Since ϕ is a bijection, there are unique r, r′ ∈ R such that ϕ(r) = s and
ϕ(r′) = s′.

ϕ−1(s ∗S s′) = ϕ−1
(
ϕ(r) ∗S ϕ(r′)

)
= ϕ−1

(
ϕ(r ∗R r′)

)
= r ∗R r′

= ϕ−1(s) ∗R ϕ−1(s′)

This shows ϕ−1 respects multiplication. A completely analogous proof is used for
addition.

Definition 4.2.9. Two rings R,S are isomorphic if there is an isomorphism from
R to S (and therefore, by the theorem, also an isomorphism from S to R).

Exercises 4.2.10. Let ϕ : R −→ S be a ring homomorphism.

(a) Show that for any subring R′ in R, the image ϕ(R′) is a subring of S.

(b) Show that any subring S′ of S, the preimage ϕ−1(S′) is a subring of R.

The Integers and F [x] for F a Field

The following theorem shows that the Integers are the “original (or initial) ring.”

Theorem 4.2.11 (The Initial Ring). For any ring R there is a unique homomor-
phism from Z to R. The kernel is the set of multiples of some integer m. If m = 0
then R has a subring isomorphic to Z. If m > 0, there is an isomorphism of Z/m
with a subring of R.

Proof. A homomorphism ϕ : Z −→ R, if it exists, would have to take 1Z to
1R. Applying the requirement that a homomorphism respects addition we see
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inductively that we must have, for m > 0,

ϕ(m) = ϕ(1Z + · · ·+ 1Z︸ ︷︷ ︸
m terms

) = 1R + · · ·+ 1R︸ ︷︷ ︸
m terms

= m1R

We also must have ϕ(−m) = −ϕ(m). Thus, there is at most one way to define a
homomorphism from Z to R. This function respects addition:

ϕ(m+ n) = (m+ n)1R

= 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
m+n terms

= 1R + · · ·+ 1R︸ ︷︷ ︸
m terms

+ 1R + · · ·+ 1R︸ ︷︷ ︸
n terms

= m1R + n1R

= ϕ(m) + ϕ(n)

It also respects multiplication:

ϕ(mn) = mn1R

= ϕ
(

1R + 1R + · · ·+ 1R︸ ︷︷ ︸
mn terms

)
=
(

1R + · · ·+ 1R︸ ︷︷ ︸
m terms

)
∗R
(

1R + · · ·+ 1R︸ ︷︷ ︸
n terms

)
= (m1R) ∗ (n1R)

= ϕ(m) ∗R ϕ(n)

If m generates the kernel the first isomorphism theorem for groups says that
Z/m is isomorphic to a subgroup of R. Since multiplication is just repeated addi-
tion, this is also an isomorphism of rings.

The integer m in the theorem is called the characteristic of R.
The Arithmetic Modulo n Theorem 1.1.16 shows that the function taking a ∈ Z

to [a]n ∈ Z/n is a homomorphism. We actually define addition and multiplication
in Z/n via addition and multiplication in Z, so it is an immediate consequence
that the map is a homomorphism.

If d divides m there is a well-defined function from [a]m to [a]d— this is because
d|m and m|(b−a) implies d|(b−a)—so any two integers that are congruent modulo
m are also congruent modulo d. On the other hand if d - m, there is no well-
defined homomorphism from Z/m to Z/d: we would have to take [1]m to [1]d but
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m[1]m = [0]m and m[1]d 6= [0]d. Since the arithmetic on Z/m is “inherited” from
Z, we have:

Theorem 4.2.12 (Homomorphism mod m). The function Z −→ Z/n taking a to
[a]n is a homomorphism.

There is a homomorphism from Z/m to Z/d if and only if d divides m. The
homomomorphism is unique (since it takes [1]m to [1]d).

We have a similar result for polynomial rings.

Theorem 4.2.13 (Homomorphism mod m(x)). Let F be a field and m(x) ∈ F [x]
The function F [x] −→ F [x]/m(x) taking a(x) to its equivalence class [a(x)] is a
homomorphism.

There is a homomorphism from F [x]/m(x) to F [x]/r(x) if and only if r(x)
divides m(x).

4.3 Constructions

In this section we introduce three ways to construct new rings: using direct prod-
ucts, using an indeterminate to create a polynomial ring, and using matrices to
create a noncommutative ring.

Direct Products

In Section 2.3 we showed that the Cartesian product of groups has the structure
of a group. Not surprisingly, we have the same situation with rings, but there is
one subtle difference, discussed below.

Definition 4.3.1. Let R and S be rings. The Cartesian product R × S, along
with the operations below form the direct product of R and S.

−(r, s) = (−r,−s)
(r1, s1) +R×S (r2, s2) = (r1 +R r2, s1 +S s2)

(r1, s1) ∗R×S (r2, s2) = (r1 ∗R r2, s1 ∗S s2)

The additive identity and multiplicative identies are of course (0R, 0S) and (1R, 1S).
The following proposition shows that the direct product of rings is in fact a ring
and gives other important properties.

Proposition 4.3.2 (Direct Product). Let R and S be rings.

(1) The above definition does, indeed, make R× S a ring.
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(2) The associative law for products of several rings holds: R1 × (R2 × R3) ∼=
(R1 ×R2)×R3.

(3) If R′ is a subring of R and S′ is a subring of S then R′ × S′ is a subring of
R× S.

(4) The projection maps pR : R × S −→ R and pS : R × S −→ S are surjective
homomorphisms.

(5) The construction and the observations above can be generalized to the direct
product of any set of rings {Ri : i ∈ I} indexed by a finite set I. (It extends
with some modification due to subtle issues when I is infinite.)

The subtle difference between the product of groups and the product of rings is
that there does not exist a natural homomorphism R −→ R× S. The choice that
one might expect would be to send r to (r, 0) but this violates the requirement
that the multiplicative identity on R should map to the multiplicative identity on
R× S.

Exercises 4.3.3. Let R and S be rings and consider R× S.

(a) Identify all the units in R× S.

(b) Identify all of the zero-divisors in R× S.

The following property of the direct product of rings is analogous to the one for
groups, Proposition 2.3.6. The proof is easily adapted from the proof for groups.

Proposition 4.3.4 (Universal Property of the Product). Let R,S and T be rings,
and let ϕ : T −→ R and ψ : T −→ S be homomorphisms. The function α :
T −→ R × S defined by t 7−→ (ϕ(t), ψ(t)) is a homomorphism. It is the unique
homomorphism such that pR ◦ α = ϕ and pS ◦ α = ψ.

Exercises 4.3.5. An element e in a ring R is idempotent when a2 = a. Evidently,
both 0R and 1R are idempotents. IfR and S are rings, thenR×S has two additional
idempotents (1, 0) and (0, 1).

(a) let R be a ring with an idempotent e.

(1) Prove that the set Re = {re : r ∈ R} with the operations inherited from
R has the structure of a ring, with identity e. It is not a subring of R
because the multiplicative identity element is different.

(2) Prove that (1− e) is also an idempotent in R.

(3) Prove that every element in R may be uniquely expressed as the sum
of an element in Re and an element in R(1− e).

(b) Find the idempotents in Z/12 and comment on the decomposition above.

(c) Find the idempotents in Z/30 and comment on the decomposition above.
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Polynomial Rings

We have already discussed polynomial rings that have coefficients in a field, such as
Q[x], Fp[x]. The construction generalizes to any ring. For R a ring, the polynomial
ring R[x] is the set of elements of the form

a0 + a1x+ a2x
2 + · · ·+ aδx

δ

with the ai ∈ R. The sum of two elements and product of two elements are familiar
formulas. For example,

(a0 + a1x+ a2x
2 + a3x

3) + (b0 + b1x+ b2x
2 + b3x

3)

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + (a3 + b3)x

3

(a0 + a1x+ a2x
2)(b0 + b1x+ b2x

2)

= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2

Some care is in order to stipulate that, for example, a0 +a1x = a0 +a1x+ 0x2.
I’ll introduce the following formal definition, but your instincts should be your
guide.

Definition 4.3.6. Let R be a ring. A polynomial in x over R is a sum a(x) =∑∞
i=0 aix

i in which only a finite number of the ai are nonzero. The support of
a(x) is the set of powers of x for the nonzero terms

{
xi : ai 6= 0

}
, or depending on

the context, the indices of those terms, {i : ai 6= 0}. For a(x) nonzero, the degree
is the maximal index with a nonzero term, deg(a(x)) = maxi∈N≥0

{i : ai 6= 0}. We
set the degree of the 0 polynomial to be −∞.

The polynomial ring over R with indeterminate x is the set of all poly-
nomials. { ∞∑

i=0

aix
i : ai ∈ R, and {i : ai 6= 0} is finite

}
The additive inverse of

∑∞
i=0 aix

i is
∑∞

i=0(−ai)xi. The sum is defined by

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i

and the product is defined by (axi) ∗ (bxj) = abxi+j and applying distributivity,
commutativity and distributivity. Consequently,

(
∞∑
i=0

aix
i)(
∞∑
j=0

bjx
j) =

∞∑
i=0

∞∑
j=0

aibjx
i+j
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and we can rearrange the sum using k = i+ j and gathering terms in xk,

=
∞∑
k=0

xk
k∑
i=0

(aibk−i)

As an aside, if we don’t require the support to be finite we still get a valid ring,
which is called the ring of formal power series.

One should check that all the properties of a ring hold, a somewhat tedious
exercise. As an example, for associativity one can show that(

a(x)b(x)
)
c(x) =

∑
m

∑
i,j,k≥0

i+j+k=m

aibjck = a(x)
(
b(x)c(x)

)

Proposition 4.3.7. For any ring R and a(x), b(x) ∈ R,

deg
(
a(x)b(x)

)
≤ deg

(
a(x)

)
+ deg

(
b(x)

)
If R is an integral domain then equality holds, the degree of a product of poly-

nomials is the sum of the degrees of the factors:

deg
(
a(x)b(x)

)
= deg

(
a(x)

)
+ deg

(
b(x)

)
In particular, if R is an integral domain, then R[x] is also an integral domain.

Proof. Let γ = deg(a(x)) and δ = deg(b(x)). From the formula for the product the

degree k term in a(x)b(x) is
(∑k

i=0 aibk−i

)
. When k > γ+ δ, the kth term will be

0 because for i > γ, ai = 0, and for i ≤ γ, k− i > δ so bk−i = 0. For k = γ + δ the
kth term in the product is aγbδ. This may be 0 in a ring with zero-divisors, hence
the degree of a product may be less than the sum of the degrees of the factors over
a ring R with zero-divisors.

In an integral domain, aγbδ 6= 0 since we assume aγ and bδ are nonzero. In
particular, a product of nonzero polynomials over an integral domain cannot be
zero. This proves the proposition.

The key lemma (1.3.1) that was used to prove the Quotient Remainder Theo-
rem (1.3.2) in F [x] does not apply over an arbitrary ring.

Exercises 4.3.8. Polynomial rings and zero divisors.

(a) Give an example to show the analogue of Lemma 1.3.1 does not hold in the
polynomial ring over Z/4.

(b) Show that Z/4[x] has a polynomial of degree 1 that is a unit (in fact its
square is 1).
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(c) Give an example of two polynomials of degree 2 in Z/8[x] such that their
product has degree 1. Show that this is not possible in Z/4[x] and Z/6[x].

Here is an additional result about polynomial rings that will be useful. It is
similar to The Initial Ring Theorem 4.2.11 for the integers.

Theorem 4.3.9 (Universal property of polynomial rings). Let R,S be rings and
let ϕ : R −→ S be a ring homomorphism. For any s ∈ S there is a unique
homomorphism from R[x] to S that agrees with ϕ on R and takes x to s, namely

ϕ : R[x] −→ S(∑
i

rix
i
)
7−→

∑
i

ϕ(ri)s
i

Proof. To simplify the notation the summations in the text below are implicitly
over the nonnegative integers unless expressed otherwise. If there is a homomor-
phism ϕ taking x to s and agreeing with ϕ on R then we must have

ϕ
(∑

i

rix
i
)

=
∑
i

ϕ(rix
i) =

∑
i

ϕ(ri)ϕ(x)i =
∑
i

ϕ(ri)s
i

So there is only one possible way to define ϕ. The key observation is that ϕ is well
defined because there is a unique way to write each element of R[x] and we have
used this unique formulation to define ϕ. We also note that the sums are all finite
sums.

To show this function is indeed a homomorphism we check that it respects
the operations. Here we check just products. As we saw above commutativity,
associativity and distributivity in the polynomial ring give

(
∑
i

aix
i)(
∑
j

rjx
j) =

∑
k

xk
k∑
i=0

(airk−i)

A similar derivation shows that for bi, ti ∈ S

(
∑
i

bis
i)(
∑
i

tis
i) =

∑
k

sk
k∑
i=0

(bitk−i)
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Thus we have

ϕ
((∑

i

aix
i
)(∑

i

bix
i
))

= ϕ
(∑

k

xk
( k∑
i=0

aibk−i

))
=
∑
k

sk
( k∑
i=0

ϕ(aibk−i)
)

=
(∑

i

ϕ(ai)s
i
)(∑

j

ϕ(bj)s
j
)

= ϕ
(∑

i

aix
i
)
ϕ
(∑

i

bix
i
)

This shows ϕ respects products.

In the first encounter a student has with polynomials they are treated as func-
tions. For a polynomial over Q, one substitutes a rational number for x and com-
putes a rational number as output. Up to this point we have treated polynomials
algebraically by adding and multiplying. The previous theorem has applications
in which we treat polynomials as functions.

Exercises 4.3.10.

(a) Consider R = S = Q and s = 0. Explain how to apply the theorem to show
that evaluating all polynomials in Q[x] at 0 yields a homomorphism from
Q[x] to Q.

(b) More generally, apply the theorem to the situation where S = R and s is
some particular element of R. Interpret the theorem for this situation as
saying that “evaluating at a fixed s ∈ R” determines a homomorphism.

(c) Let’s apply the theorem to the situation where S = R[x] and the particular
element s(x) ∈ R[x]. The theorem says that there is a homomorphism

ϕ : R[x] −→ R[x]

x −→ s(x)

Show that an arbitrary f(x) ∈ R[x] maps to f(s(x)). Show that, as a
function this is the composition of the function defined by f(x) and the
function defined by s(x).

By iteratively applying the polynomial ring construction we can create a poly-
nomial ring in several indeterminates over a ring R.

Definition 4.3.11. The polynomial ring over the ringR in indeterminates x1, x2, . . . , xn,
which we write asR[x1, x2, . . . , xn−1, xn], is defined inductively asR[x1, . . . , xn−1][xn].
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An element xα1
1 xα2

2 · · ·xαnn is called a monomial. We will say that (α1, α2, . . . , αn)
is the multidegree of this monomial. The elements of R[x1, x2, . . . , xn−1, xn] are
finite sums of terms of the form axα1

1 xα2
2 · · ·xαnn .

This has the following important property.

Theorem 4.3.12 (Universal property of polynomial rings). Let R,S be rings and
let ϕ : R −→ S be a ring homomorphism. For any s1, . . . , sn ∈ S there is a unique
homomorphism from R[x1, x2, . . . , xn] to S that agrees with ϕ on R and takes xi
to si.

Matrix Rings

Although we are focusing on rings that are commutative, and moreover, have de-
fined a ring to be commutative, it is worth presenting one very important example
of a noncommutative ring.

Definition 4.3.13. Let R be a ring and let n be a positive integer. The n × n
matrix ring over R, written Mn(R), is the set of n× n matrices using the usual
formulas for addition and multiplication.

Even for a field, the matrix ring is noncommutative, as you may recall from
your experience with linear algebra.

Exercises 4.3.14. Consider M2(Q) and recall the various spaces associated to a
matrix (e.g. rowspace, nullspace).

(a) Show that A =

[
1 0
1 0

]
is a zero divisor in M2(Q). Find a B such that

AB = 0 (the zero matrix). Find a C such that CA = 0.

(b) What characterizes the zero divisors in M2(Q)?

(c) Show that every nonzero element of M2(Q) (or more broadly Mn(F ) for F
a field) is either a zero divisor or a unit.

In linear algebra, matrices over a field arise as functions that map one vector
space to another. A square matrix maps a vector space to itself. Matrices over a
ring can also be treated as functions: an m × n matrix over R maps a “vector”
of length n over R to a “vector” of length m over R, using the familiar formulas
for the product of a matrix and vector. I put vector in quotes because Rn is
not a vector space when R is not a field. Yet, Rn, with rules for addition and
scalar multiplication analogous to those for vector spaces, is an interesting object
to study. Modules over a ring are the generalization of vector spaces. The subject
is a bit more complex because not every nonzero element is a unit, and, even more
challenging, there may be zero-divisors in the ring.

119



4.4 Ideals and Quotient Rings

For a group G, ∗ the operation can be extended to cosets of a subgroup, provided
the subgroup N is normal. This allows for the construction of the quotient group
G/N . For rings, we want both addition and multiplication to extend to cosets,
and the appropriate subsets of a ring that allow for this are ideals.

Definition 4.4.1. An ideal of a ring R is a nonempty subset I ⊆ R which is
closed under addition and closed under multiplication by an arbitrary element of
R:

a+ b ∈ I if a, b ∈ I (4.1)

ra ∈ I if a ∈ I and r ∈ R (4.2)

We will say that I absorbs products.

Proposition 4.4.2. Let R be a ring.
If an ideal I of R contains a unit, then I = R.
For any a1, a2, . . . , an ∈ R, the following set is an ideal of R.

I = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}

Proof. Let R be a ring. Let u be a unit in R with inverse v. If I is an ideal
containing u then uv = 1 is also in I since I absorbs products. Again, since I
absorbs products, for any r ∈ R, r1 = r ∈ R. Thus I = R.

Let a1, . . . , an be arbitrary elements of r. We want to show

I = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}

is an ideal of R. We can see that I is closed under addition because

(r1a1 + r2a2 + · · ·+ rnan) + (s1a1 + s2a2 + · · ·+ snan)

= r1a1 + s1a1 + r2a2 + s2a2 + · · ·+ rnan + snan

= (r1 + s1)a1 + (r2 + s2)a2 + · · ·+ (rn + sn)an

The first step repeatedly uses commutativity and associativity of addition. The
last step uses distributivity. The final expression is in a form that shows it is an
element of I.

The product of any t ∈ R with r1a1 + r2a2 + · · ·+ rnan is

t
(
r1a1 + r2a2 + · · ·+ rnan

)
= (tr1)a1 + (tr2)a2 + · · ·+ (trn)an

using distributivity and associativity of multiplication. The result is in a form to
show it is in I.
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Definition 4.4.3. We say I is generated by a1, a2, . . . , as if I = {r1a1 + r2a2 +
· · · + rnan : ri ∈ R}. We write I = 〈a1, a2, . . . , an〉. The ideal I is principal if
there exists some a ∈ I such that I = {ra : r ∈ R}. A ring in which all ideals are
principal is called a principal ideal domain, or a PID for short.

An ideal generated by several elements may also be generated by a single
element, and therefore be principal.

Proposition 4.4.4. Every ideal in Z is principal. Every ideal in F [x] for F a
field is principal.

Proof. Let I be an ideal of Z. If I = {0}, there is nothing to prove. Otherwise,
let a be the smallest positive integer in I. Let b be any other nonzero element of
I. Then, by the properties of ideals, any linear combination of a and b is in I. By
the GCD Theorem 1.1.4, gcd(a, b) ∈ I. But the gcd of a and b is positive and less
than or equal to a. Since a is the smallest positive element of I, we must have
gcd(a, b) = a. Consequently, an arbitrary element of I is divisible by a, so I = 〈a〉
is principal.

The same proof applies to F [x] with minor modification. For I a nonzero ideal
of F [x], one uses the monic polynomial of lowest degree in I.

From the proof we see that the ideals of Z are in one correspondence with the
nonnegative integers. Similarly, the principal ideals, other than the 0-ideal, of F [x]
are in one to one correspondence with the monic polynomials.

Exercises 4.4.5.

(a) Let R be a subring of a ring S. Let I be an ideal in S. Show that I ∩ R is
an ideal in R.

Exercises 4.4.6. Let R and S be rings and consider R× S.

(a) Let I be an ideal in R and J and ideal in S. Show that I × J is an ideal in
R× S.

(b) Show that all ideals in R× S are of the form I × J .

Quotient Rings

A ring R is an abelian group under addition, so, for any subgroup, we can form
the quotient group of R by that subgroup. It is natural, when we take the mul-
tiplicative structure of R into account, to want the quotient group to also have a
multiplicative structure. The necessary property to make this work is the “absorbs
products” requirement in the definition of ideal. We have actually seen this appear
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in Proposition 4.2.7 which said that the kernel of a homomorphism is closed under
multiplication by an arbitrary element of R.

We will write cosets of an ideal I in R in the same form as we did for abelian
groups. For any r ∈ R, its coset is r + I. The coset r + I may be written in
other ways; for any a ∈ I, the cosets defined by r and by r + a are the same. For
s ∈ R, and b ∈ I the cosets defined by s and s + b are also the same. We would
like to define multiplication of cosets, but for that to work, the product should be
independent of the way we name the coset (as r + I or as (r + a) + I). In other
words we want the products rs and (r + a)(s + b) to define the same cosets. We
have

(r + a)(s+ b) = rs+ as+ rb+ ab

Since a, b ∈ I and I absorbs products, as+ rb+ ab ∈ I. Thus rs+ I = (r+ a)(s+
b) + I, and we have a well-defined product for cosets of I.

The following proposition summarizes this discussion, and we note that multi-
plication of cosets is determined by multiplication in R so we get a homomorphism
from R to R/I.

Proposition 4.4.7. Let R be a ring and let I be a proper ideal in R (that is I 6= R).
Let R/I = {r + I : r ∈ R}. Then R/I is a ring, with additive structure defined by
R/I as the quotient of the abelian group R by its subgroup I, and multiplicative
structure defined by

(r + I)(s+ I) = rs+ I

The additive identity is 0 + I and the multiplicative identity is 1 + I.
The function R −→ R/I that takes r to r + I is a homomorphism of rings.

Example 4.4.8. In Z, the subgroups 〈n〉 are also ideals, because multiplication
is simply repeated addition, and a subgroup is closed under addition. Thus the
quotient of Z by its subgroup 〈n〉 is a ring.

Example 4.4.9. Let F be a field. We have seen that any ideal in F [x] is principal,
generated by some m(x) ∈ F [x]. Every polynomial is congruent modulo m(x) to
its remainder upon division by m(x).

We have already seen two familiar examples of quotient rings in Chapter 1, the
integers modulo n and, for F a field, F [x] modulo m(x). The treatment of these in
Chapter 1 is from a modular arithmetic perspective and we used brackets to define
the equivalence class for elements. We now see them each as a quotients of a ring
(Z or F [x] repectively) and we now write the equivalence classes as cosets rather
than using brackets. One convenient aspect of working with these quotient rings is
that each element can be uniquely represented by the remainder upon division by
the modulus. One can use {0, 1, . . . , n− 1} as the elements of Z/n and omit the
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brackets or coset notation when the context makes clear that we are working in Z/n
rather than Z. Similarly one can use polynomials of degree less than deg(m(x))
as the elements of F [x]/m(x).

Definition 4.4.10. Let R be a ring and I an ideal in R. A system of repre-
sentatives for R/I is a set S ⊆ R such that each r ∈ R is congruent modulo I to
exactly one element of S.

It can be more challenging to find a system or representatives for R/I in other
rings, even in F [x, y] with F a field. In polynomial rings over a field, monomial
ideals and principal ideals admit a clear system or representatives, but things get
much more complicated when there are several polynomial generators or when the
base ring is not a field.

Definition 4.4.11. In a polynomial ring R[x1, x2, . . . , xn], a monomial ideal is
an ideal generated by monomials.

For the following two examples it is helpful to think of F [x, y] as a vector space
over F with basis xiyj for i, j ≥ 0.

Example 4.4.12. Consider a field F and F [x, y]/〈xαyβ〉. Since an ideal is closed
under multiplication, every monomial axα

′
yβ
′

with α′ ≥ α and β′ ≥ β is in 〈xαyβ〉.
Since an ideal is closed under addition, and any sum of monomials with x-degree at
least α and y-degree at least β is in 〈xαyβ〉. Conversely, any multiple of xαyβ must
be a polynomial whose terms all have x-degree at least α and y-degree at least
β. The multidegrees of the monomials in 〈xαyβ〉 are those in the region marked Γ
shown in Figure 4.1.

Given any polynomial we may subtract off the monomials that are multiples
of xαyβ and be left with a polynomial that has terms that have x-degree less
than α or y-degree less than β. The multidegrees of these monomials are in the
region marked ∆ in Figure 4.1. These monomials are a basis for the quotient ring
F [x, y]/〈xαyβ〉. A set of representatives for F [x, y]/〈xαyβ〉 is all polynomials whose
terms have multidegree in ∆.

Example 4.4.13. Consider a field F and F [x, y]/〈x3, xy, y2〉. A monomial that
is in 〈x3, xy, y2〉 has multidegree that is in the region marked Γ in Figure 4.2.
As in the previous example any polynomial whose terms involve just monomials
with multidegree in Γ will be in 〈x3, xy, y2〉. Given any other polynomial we may
subtract off elements of 〈x3, xy, y2〉 and be left with a polynomial all of whose
terms are in the set ∆ in Figure 4.2. The monomials with multidegree in ∆ form a
basis for a set of representatives for F [x, y]/〈x3, xy, y2〉. The set of representatives
is all polynomials whose terms have multidegree in ∆.
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Figure 4.1

Figure 4.2
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Example 4.4.14. Consider now a principal ideal that is non-monomial, F [x, y]/〈y2 + x3〉.
In this quotient ring y2 = −x3. Given an arbitary polynomial we can replace y2

with −x3 and get a polynomial that is equivalent modulo y2 + x3 and has terms
that are at most degree 1 in y. Thus

{
xi : i ∈ N0

}
∪
{
xiy : i ∈ N0

}
is a basis for

F [x, y]/〈y2 + x3〉. (It should be clear that no sum of these monomials can be a
multiple of y2+x3.) Alternatively, we could replace each occurence of x3 with −y2
and obtain a basis

{
yj : j ∈ N0

}
∪
{
xyj : j ∈ N0

}
∪
{
x2yj : j ∈ N0

}
.

We have emphasized the strong relationship between the ring integers of Z and
polynomial rings F [x] for F a field. We have seen a couple of examples in F [x, y].
There are analogous examples for Z[y]. We substitute a prime, say 2, for x and
consider something analogous to a monomial ideal.

Example 4.4.15. Consider the ideal 〈4y3, 8y2〉 in Z[y]. The multiples of 4y3 will
all have degree at least 4 (in y) and will have coefficient a multiple of 4. A set
of representatives for Z[y]/〈4y3, 8y2〉 is a0 + a1y + a2y

2 + a3y
3 + . . . in which

ak ∈ {0, 1, 2, 3} for k ≥ 3 and a2 ∈ {0, 1, 2, 3, 4, 5, 6, 7} and a0, a1 ∈ Z.

Exercises 4.4.16.

(a) Find the nilpotents, zero divisors, and units in F [x, y]/〈x3y2〉.
(b) Find the nilpotents, zero divisors, and units in F [x, y]/〈x3, y2〉.
(c) Find the nilpotents, zero divisors, and units in F [x, y]/〈x3, xy, y2〉.
(d) Find the nilpotents, zero divisors, and units in F [x, y]/〈y2 − x3〉.

Exercises 4.4.17.

(a) We were careful in the last example to use powers of 2 as the coefficients in
the ideal in Z[y]. Find a system of representatives for Z[y]/〈4y3, 7y2〉.

(b) Find a system of representatives for Z[y]/〈ay5, by4, cy2, dy〉. [Hint: GCD.]

4.5 Isomorphism Theorems

The First and Third Isomorphism Theorems for rings are quite straightforward ex-
tensions of the theorems for groups as are the Factor Theorem and Correspondence
Theorem. The first theorem below combines the First Isomorphism Theorem and
the Factor Theorem. The Second Isomorphism Theorem, treated at the end of the
section, is less central in ring theory.

Theorem 4.5.1 (First Isomorphism and Factor Theorems). Let ϕ : R −→ S be
a ring homomorphism and let K be the kernel. For any ideal J contained in K
the homomorphism ϕ factors through R/J in the following sense: there is a ring
homomorphism ϕ̃ : R/J −→ S defined by r + J −→ ϕ(r) such that ϕ̃ ◦ π = ϕ.
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R
ϕ //

π
��

S

R/J

ϕ̃

==

Additionally,

(1) If J = K then ϕ̃ is injective.

(2) If ϕ is surjective then so is ϕ̃.

(3) If J = K and ϕ is surjective then ϕ̃ is an isomorphism.

Proof. Let ϕ : R −→ S be a ring homomorphism with kernel K and J an ideal
contained in K. By the Factor Theorem for groups 2.7.11, we know there is well
defined group homomorphism ϕ̃ : R/J −→ S. This is because for any r ∈ R and
j ∈ J we have ϕ(r + j) = ϕ(r), so we can define ϕ̃(r + J) = ϕ(r) unambiguously.
The map is a group homomorphism because

ϕ̃(r1 + r2 + J) = ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) = ϕ̃(r1 + J) + ϕ̃(r2 + J)

Similarly the map respects multiplication because

ϕ̃(r1r2 + J) = ϕ(r1r2) = ϕ(r1)ϕ(r2) = ϕ̃(r1 + J) ∗ ϕ̃(r2 + J)

Finally, ϕ̃(1R + J) = ϕ(1R) = 1S , so ϕ̃ is a homomorphism of rings. By
construction, ϕ = ϕ̃ ◦ π.

The kernel of ϕ̃ is {r + J : ϕ(r) = 0}. This is clearly K/J = {k + J : k ∈ K}.
When J = K, ϕ̃ is injective since {k +K : k ∈ K} = {0 +K}.

Suppose ϕ is surjective. For any s ∈ S, there is some ∈ R such that ϕ(r) = s.
Then ϕ̃(r+ J) = ϕ(r) = s, so ϕ̃ is also surjective. If J = K and ϕ is surjective we
have an isomorphism ϕ̃ : R/K −→ S.

We can derive the Third Isomorphism Theorem as a corollary. Consider the
case ϕ : R −→ R/K and let J be an ideal of R with J ⊆ K. The previ-
ous theorem says that ϕ̃ : R/J −→ R/K is a surjective homomorphism. The
kernel is {r + J : ϕ̃(r + J) = 0 +K}. But ϕ̃(r + J) = ϕ(r), so the kernel is
{r + J : r ∈ K} = K/J . Now applying item (3) of the theorem to ϕ̃ we get an
isomorphism between (R/J)/(K/J) and R/K.

We can also prove the Third Isomorphism Theorem directly, which we do below.

Theorem 4.5.2 (Third Isomorphism Theorem). Let R be a ring with ideals K
and J such that J ⊆ K. Then K/J is an ideal of R/J and (R/J)/(K/J) ∼= R/K.
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Proof. I claim there is a well defined function from R/J to R/K defined by ϕ(r+
J) = r + K. We need only check that if r1 + J = r2 + J then r1 + K = r2 + K.
This is clearly true because if r1 + J = r2 + J then r1 − r2 ∈ J. Since J ⊆ K we
have r1 = r2 ∈ K so r1 +K = r2 +K. We clearly also have

ϕ
(
(r1 + J) + (r2 + J)

)
= ϕ(r1 + r2 + J)

= r1 + r2 +K

= (r1 +K) + (r2 +K)

= ϕ(r1 +K) + ϕ(r2 +K)

and a similar computation holds for multiplication. Thus ϕ is a homomorphism
and it is surjective.

The kernel is {r + J : r +K = 0 +K}, but this is {r + J : r ∈ K} = K/J . So
by the first isomorphism theorem, (R/J)/(K/J) ∼= R/K.

From Theorem 4.5.1 any surjective homomorphism R −→ S gives rise to an iso-
morphism between R/K and S where K is the kernel of R −→ S. A strengthening
of Theorem 4.5.2 is the following.

Theorem 4.5.3 (Correspondence). Let R −→ S be a surjective homomorphism
of rings with kernel K. There is a one-to-one correspondence, given by ϕ, between
ideals of S and ideals of R containing K.

R −→ S

I ←→ ϕ(I)

ϕ−1(J)←→ J

The correspondence respects containment, and quotients as follows. For I, I ′ con-
taining K,

• K ≤ I ≤ I ′ if and only if ϕ(I) ≤ ϕ(I ′).

• The map ϕ induces an isomorphism R/I ∼= S/ϕ(I).

Theorem 4.5.4 (Second Isomorphism). Let S be a subring of R and let J be an
ideal in R.

(1) S + J is a subring of R.

(2) S ∩ J is an ideal in S.

(3) S/(S ∩ J) ∼= (S + J)/J .
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Proof. The first two items are left as exercises. Consider the homomorphism ϕ :
S −→ R/J , which is the composition of the inclusion map : S −→ R and the
quotient map R −→ R/J . The image of ϕ is {s+ J : s ∈ S} and it is the quotient
of the subring S + J in R by the ideal J . The kernel of ϕ is S ∩ J . By the first
isomorphism theorem, S/(S ∩ J) ∼= (S + J)/J .

Exercises 4.5.5.

(a) Prove (1) and (2) of the Second Isomorphism Theorem.

Exercises 4.5.6. Let ϕ : R −→ S be a homomorphism of rings, not necessarily
surjective.

(a) Let J be an ideal in S. Show that ϕ−1(J) is an ideal in R.

(b) Give an example to show that for I an ideal in R, ϕ(I) may not be an ideal
in S.

4.6 Operations on Ideals and Properties of Ideals

Intersection, Sum and Product of Ideals

Proposition 4.6.1. Let I and J be ideals. Then I∩J is an ideal. More generally,
if A is a set of ideals in R then ⋂

I∈A
I

is an ideal in R.

Proof. Let a, b ∈
⋂
I∈A I. Then we have a, b ∈ I for each I ∈ A. Since each I is

closed under addition, a+ b ∈ I for all I ∈ A. Consequently, a+ b ∈
⋂
I∈A I.

Similarly, we can show that
⋂
I∈A I absorbs products. For r ∈ R and a ∈⋂

I∈A I we have a ∈ I for each I ∈ A. Since each I absorbs products, ra ∈ I for
each I ∈ A. Thus ra ∈

⋂
I∈A I.

Definition 4.6.2. Let I and J be ideals. The sum of I and J is I + J =
{a+ b : a ∈ I and b ∈ J}. The product of I and J is IJ = 〈ab : a ∈ I and b ∈ J〉.
Similarly for ideals I1, . . . , In in R we can define

I1 + I1 + · · ·+ In = {r1a1 + r2a2 + · · ·+ rnan : rk ∈ R, ak ∈ Ik}
I1I2 . . . In = 〈a1a2 · · · an : ak ∈ Ik for all k ∈ {1, . . . , n}〉

There is a subtle, but very important, difference in the two definitions. The
product of ideals I and J is defined to be generated by the set of elements ab with
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a ∈ I and b ∈ J . The sum of I and J is the set of all sums a + b with a ∈ I and
b ∈ J . We must show that this set is in fact an ideal.

Proposition 4.6.3. Let I1, . . . , In be ideals in R. Then I1 + · · · + In is also an
ideal.

Proof. We have to show I1 + · · · + In is closed under sums and that it absorbs
products. Consider two arbitrary elements of I1 + I2 + · · · + In, which we may
write as a1 + a2 + · · ·+ an and b1 + b2 + · · ·+ bn with ak, bk ∈ Ik for k = 1, . . . , n.
Their sum is, after rearranging using commutativity and associativity, (a1 + b1) +
(a2 + b2) + · · · + (an + bn). Since each (ak + bk) ∈ Ik, the sum is an element of
I1 + I2 + · · ·+ In.

Let r ∈ R and a1 + a2 + · · ·+ an with ak ∈ Ik. Then by distributivity

r(a1 + a2 + · · ·+ an) = ra1 + ra2 + · · ·+ ran

Since each Ik absorbs products, each rak ∈ Ik. Thus

ra1 + ra2 + · · ·+ ran ∈ I1 + I2 + · · ·+ In

this shows I1 + I2 + · · ·+ In absorbs products.

Exercises 4.6.4.

(a) In the integers, show that the sum 〈a〉+ 〈b〉 = 〈gcd(a, b)〉.
(b) In the integers, show that the intersection 〈a〉 ∩ 〈b〉 = 〈lcm(a, b)〉.
(c) Extend these results to F [x] for F a field.

Proposition 4.6.5. Let I1, . . . , In be ideals. Then

I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In

Proof. The product I1I2 · · · In is generated by elements of the form a1a2 · · · an
with each ak ∈ Ik. Since each Ik absorbs products, a1a2 · · · an ∈ Ik for all k.
Thus a1a2 · · · an ∈ I1 ∩ I2 ∩ · · · ∩ In. Since the generators of I1I2 · · · In are all in
I1 ∩ I2 ∩ · · · ∩ In we have

I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In

The sum of an arbitrary set of ideals in R (including an infinite set) is defined
in a similar fashion, but requires care because we must restrict to finite sums.
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Definition 4.6.6. Let A be a set of ideals in R. The sum of these ideals is

∑
I∈A

I =

{∑
I∈B

aI : aI ∈ I, and B is a finite subset of A

}

Exercises 4.6.7. Let ϕ : R −→ S be a homomorphism.

(a) For I and ideal in R show that ϕ−1(ϕ(I)) = I + K where K = kerϕ. In
particular, if I contains K, then ϕ−1ϕ(I) = I.

Maximal, Prime and Radical Ideals

There are three key properties that ideals may have.

Definition 4.6.8. Let I be a proper ideal of R (that is I 6= R). An ideal I is
maximal if the only ideal properly containing I is R. The ideal I is prime when
ab ∈ I implies that either a ∈ I or b ∈ I. The ideal I is radical when an ∈ I for
n ∈ N implies a ∈ I.

In any integral domain, the zero ideal is prime. This follows directly from the
definition of integral domain, ab = 0 implies a = 0 or b = 0.

Let I be a nonzero ideal in the integers, and let d be its positive generator. If
d is not a prime number, say d = ab with a, b < d, then I is not a prime ideal
since ab ∈ I, but a, b 6∈ I. If d is a prime number then ab ∈ I implies that d|ab,
and by primality of d, either d|a—and therefore a ∈ I—or d|b—and then b ∈ I.
Consequently, I is prime. We conclude that, for the integers, an ideal is prime if
and only if it is generated either by 0 or a prime integer.

Exercises 4.6.9.

(a) Show that the nonzero prime ideals in Z are also maximal ideals. [Suppose
p is a prime number. Try to enlarge 〈p〉 and show that you get all of Z.]

(b) Let I be a nonzero ideal in Z. We know I is principle; let a be the small-
est positive integer in I. Show that I is radical if and only if the prime
factorization of a is a = p1p2 · · · pr for distinct primes pi.

(c) Extend these results to F [x] for F a field.

Theorem 4.6.10. All prime ideals are radical. All maximal ideals are prime.

Proof. Let P be a prime ideal. We will show that if an ∈ P then a ∈ P . This
establishes that P is a radical ideal. Suppose an ∈ P . Let m ≤ n be the smallest
power of a that lies in P . If m > 1, then we have a∗am−1 = am ∈ P . By primality,
either a or am−1 is in P . This contradicts our assumption on m. Thus m = 1 and
a ∈ P .

130



Let M be a maximal ideal. We will show that ab ∈ M implies either a or b is
in M . This establishes that M is prime. Let ab ∈M . Suppose that a 6∈M . Since
M is a maximal ideal M + 〈a〉 = R. Consequently there is some m ∈M and r ∈ R
such that m + ra = 1. Multiplying both sides by b we get mb + rab = b. Since
ab ∈ M , we have b = mb + rab ∈ M . Thus if ab ∈ M and a 6∈ M then b ∈ M , as
was to be shown.

The proof that a maximal ideal is prime echoes the proof that an irreducible
integer (or polynomial in F [x] for F a field) is prime, Theorem 1.1.9.

Now we show that these properties of ideals are intimately connected with
properties of the quotient ring.

Theorem 4.6.11. Let R be a ring and I and ideal in R.

• I is a maximal ideal if and only if R/I is a field.

• I is a prime ideal if and only if R/I is an integral domain.

• I is a radical ideal if and only if R/I is reduced.

Proof. We will prove one direction for each claim and leave the other as an exercise.
Suppose I is maximal. Let r + I be an arbitrary element of R/I with r + I 6=

0 + I. Since I is maximal, I + 〈r〉 = R, so there is some a ∈ I and s ∈ R such that
a+ sr = 1. Then sr+ I = (1− a) + I = 1 + I, because a ∈ I. Consequently, s+ I
is the inverse of r + I. Thus an arbitrary nonzero element of R/I has an inverse,
and R/I is a field.

Suppose I is a prime ideal. Let r+I and s+I be such that (r+I)(s+I) = 0+I.
Then rs+ I = 0 + I so rs ∈ I. Since I is prime, either r ∈ I or s ∈ I. Thus, either
r + I = 0 + I or s+ I = 0 + I. This shows R/I has no zero-divisors.

Suppose I is a radical ideal. Suppose that r + I is nilpotent in R/I; that is
(r + I)n = 0 + I. Then rn + I = 0 + I, so rn ∈ I. Since I is radical, we must
have r ∈ I, and consequently r + I = 0 + I. This shows that R/I has no nonzero
nilpotent elements, so R/I is reduced.

Exercises 4.6.12. Let ϕ : R −→ S be a homomorphism of rings and let J be an
ideal in S. From Exercise 4.5.6 we know that ϕ−1(J) is an ideal in R.

(a) If J is a radical ideal, show that ϕ−1(J) is a radical ideal in R.

(b) If J is a prime ideal, show that ϕ−1(J) is a prime ideal in R.

(c) Using R = Z and S = Q show that ϕ−1(J) may not be maximal when J is
maximal.

Exercises 4.6.13.
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(a) Show that the intersection of two radical ideals is radical.

(b) Illustrate with an example from F [x] for F a field.

(c) Given an example in F [x] to show that the intersection of two prime ideals
may not be prime.

Exercises 4.6.14.

(a) Let N = {a ∈ R : an = 0 for some n ∈ N} be the set of all the nilpotent
elements in a ring R. Show that N is an ideal of R. It is called the nilradical
of R.

(b) Show that R/N is reduced (it has no nonzero nilpotent elements).

(c) Show that N is contained in the intersection of all prime ideals in R. (The
reverse containment is also true, but much more difficult to prove.)

(d) Show that if a ∈ N then 1− a and 1 + a are units.

Comaximality and the Chinese Remainder Theorem

Recall that two integers a, b are coprime if they have no common factor other
than 1. A consequence—the GCD Theorem 1.1.4—is that some linear combination
of a and b is equal to 1. Interpreting this in the context of ideals, the ideal 〈a, b〉
generated by the two coprime integers is all of Z. We can extend this notion of
coprime integers (or polynomials) to ideals in a general ring R.

For any two integers m, n we have a homomorphism Z/mn −→ Z/m and
Z/mn −→ Z/n. This gives a homomorphism into the direct product by Proposi-
tion 4.3.4: Z/mn −→ Z/m × Z/n. The Chinese Remainder Theorem says this is
an isomorphism when m,n are coprime.

Theorem 4.6.15 (Chinese Remainder Theorem). Let m,n be coprime integers.
The natural maps from Theorem 4.2.12 give an isomorphism Z/mn −→ Z/m ×
Z/n.

The proof is based on the GCD Theorem, which says that there are integers u
and v such that mu+nv = 1. More generally we have the property of comaximality
for ideals, and a Chinese Remainder Theorem for comaximal ideals whose proof
essentially mimics the proof of the Chinese Remainder Theorem for integers.

Definition 4.6.16. Two ideals I and J in a ring R are comaximal if I + J = R.

Theorem 4.6.17. Let I and J be proper ideals of R that are comaximal. Then
IJ = I ∩ J and R/IJ ∼= R/I ×R/J .

Proof. Since I and J are comaximal there exist a ∈ I and b ∈ J such that a+b = 1.
We now show that the homomorphism R −→ R/I ×R/J is surjective. The image
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of a in R/J is a+ J = (1− b) + J = 1 + J because b ∈ J . The image of a in R/I
is a+ I = 0 + I because a ∈ I. Similarly, the image of b is 1 + I in R/I and it is
0 + J in R/J . Thus for an arbitrary element (r1 + I, r2 + J) in R/I ×R/J , there
is a preimage, r1a+ r2b.

The kernel of R −→ R/I ×R/J is I ∩ J so the proof is complete once we show
IJ = I ∩ J . We already know that IJ ⊆ I ∩ J . Let c ∈ I ∩ J . Then ac+ bc = c,
but ac and bc are both in IJ so we have expressed an arbitrary element of I ∩ J
as a sum of two elements in IJ . Thus IJ = I ∩ J .

4.7 Fractions

Dealing with fractions is one of the big challenges for primary school students. A
key reason for the difficulties is that a fraction can be written in an infinite number
of equivalent ways (for example 1/2 = 2/4 = 3/6 . . . ) and it is necessary to use
multiple expressions for a number in order to do arithmetic with fractions. Un-
derlying our use of fractions is an equivalence relation on ordered pairs of integers;
which is not something we dare to explain to students. In this section we show
that the method used to construct the rational numbers from the integers extends
with little modification to an arbitrary ring.

First let’s consider some examples to show that there are other rings of interest
in between the integers and the rational numbers, that is, rings properly containing
Z but properly contained in Q.

Example 4.7.1. One can verify that the following sets are in fact subrings of Q.

• R =
{
a/2i : a ∈ Z, i ∈ N0

}
.

• S = {a/b : a ∈ Z and b is an odd integer}.

• T =
{
a/100i : a ∈ Z, i ∈ N0

}
.

Exercises 4.7.2. For the rings R, S, and T :

(a) Identify all the units in each of these rings.

(b) Show that in each of these rings every ideal is principal, generated by some
nonnegative integer.

(c) In Z, any two distinct positive integers generate different ideals. Show that
is not true in R, S, T . For each of these rings, identify a set of integers that
uniquely define all ideals.

(d) Which of these ideals are prime?

The rings in the previous example and exercise are all constructed via the
process we now describe.
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Definition 4.7.3. Let R be an integral domain. A subset D of R \ {0} that
contains 1 and is closed under multiplication is called a multiplicatively closed
set.

Let D be a multiplicatively closed set in R. Define a relation on R×D by

(r1, d1) ∼ (r2, d2) when r1d2 = r2d1

Proposition 4.7.4. The relation above is an equivalence relation. Under this
relation for any r ∈ R and c, d ∈ D, (r, d) ∼ (rc, dc)

Proof. The relation is reflexive:(r, d) ∼ (r, d) since rd = rd.
The relation is symmetric: Suppose (r1, d1) ∼ (r2, d2) so r1d2 = r2d1. Then

r2d1 = r1d2 so (r2, d2) ∼ (r1, d1).
The relation is transitive: Suppose (r1, d1) ∼ (r2, d2) and (r2, d2) ∼ (r3, d3).

Then r1d2 = r2d1 and r2d3 = r3d2. Multiplying the first by d3 and the second by
d1 we get

r1d2d3 = r2d1d3 = r2d3d1 = r3d2d1

Since R is an integral domain, we can cancel d2 (see Exercise 4.1.6) to obtain
r1d3 = r3d1. This shows (r1, d1) ∼ (r3, d3).

The final claim follows from the definition of the relation rdc = drc. It may be
seen as simplification of fractions.

A key step in the above proof involved the cancellation for integral domains.
The construction of rings of fractions can be generalized to arbitrary rings provided
D contains no zero-divisors. It can be generalized to allow D to contain zero-
divisors with one small modification to the definition of the equivalence relation.

Theorem 4.7.5. Let D be a multiplicatively closed set in R. Let [r, d] denote the
equivalence class of (r, d). The operations

• [r, c] + [sd] := [rd+ sc, cd], and

• [r, c] ? [s, d] := [rs, cd],

are well defined. The set R ×D/ ∼ with these operations is a ring with additive
identity [0, 1] and multiplicative identity [1, 1]. We denote this ring D−1R. The
map R −→ D−1R taking r to [r, 1] is an embedding.

Proof. Let (r, c) and (s, d) be in S×D. Since D is multiplicatively closed, cd ∈ D
so both (rd+ sc, cd) and (rs, cd) are in S ×D and their equivalence classes exist.

To show that the operations are well defined, suppose two different represen-
tatives for each equivalence class: (r, c) ∼ (r′, c′) and (s, d) ∼ (s′, d′). We want to
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show that the formula for the equivalence class of the product (and for the sum)
is independent of the representatives chosen. We deal with the product first. We
want to show that (rs, cd) ∼ (r′s′, c′d′), which reduces to rsc′d′ = r′s′cd. We know

rc′ = r′c (4.3)

sd′ = s′d (4.4)

Multiplying the first equation by sd′ and the second by rc′ we get

rc′sd′ = r′csd′ = r′csd′ = r′cs′d

Rearranging the factors on the first and last terms gives rsc′d′ = r′s′cd.
For the sum we want to show (rd+sc, cd) ∼ (r′d′+s′c′, c′d′). Multiplying (4.3)

bu dd′ we get rc′dd′ = r′cdd′, and multiplying (4.4) by cc′ gives sd′cc′ = s′dcc′.
Adding the two equations

rc′dd′ + sd′cc′ = r′cdd′ + s′dcc′

(rd+ sc)c′d′ = (r′d′ + s′c′)cd

This establishes (rd+ sc, cd) ∼ (r′d′ + s′c′, c′d′).
Verifying the claims about the additive and multiplicative identity are routine

computations. Verification of commutativity and associativity are more involved
by fairly straightforward and are left to the reader. We next show that multipli-
cation distributes over addition.

[r, c]
(

[s, d] + [t, f ]
)

= [r, c]
[
sf + td, df ]

)
= [rsf + rtd, cdf ]

[r, c] ∗ [s, d] + [r, c] ∗ [t, f ]
)

= [rs, cd] + [rt, cf ]

= [rscf + rtcd, cfcd] = [rsf + rtd, cdf ]

The function ι : R −→ D−1R taking r to [r, 1] takes the identity to the identity
element of R to the identity element of D−1R. It respects sums since [r, 1]+[s, 1] =
[r ∗ 1 + s ∗ 1, 1 ∗ 1] = [r + s, 1] which is the image of r + s. The map ι respects
products since [r, 1] ∗ [s, 1] = [rs, 1 ∗ 1] which is the image of rs. Thus ι is a
homomorphism. Suppose ι(r) = ι(s). Then [r, 1] = [s, 1]. By the definition of the
equivalence relation, r ∗ 1 = s ∗ 1. This shows ι is injective.

The ring D−1R is often called a localization of R.

Exercises 4.7.6.
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(a) Let D = {30i : i ∈ N0}. Verify that D is multiplicatively closed in Z. Identify
all of the prime ideals in D−1Z.

(b) Let D = {(x3 − x)i : i ∈ N0}. Verify that D is multiplicatively closed in
Q[x]. Identify all of the prime ideals in D−1Q[x].

(c) Under what conditions on D does D−1Z have just one maximal ideal?

(d) Let D be multiplicatively close I be an

Exercises 4.7.7. In this exercise we characterize all localizations of Z.

(a) Let D = {d1, d2, . . . , dt} ⊆ Z \ {0}. What is the smallest multiplicatively
closed subset of Z containing D and 1? What if D is an infinite subset of
Z \ {0}? We will abuse notation and write D−1Z for the localization due to
the smallest multiplicatively closed subset of Z \ {0} containing D.

(b) Suppose D ⊆ N ⊆ Z \ {0}. Show that there is an injective ring homomor-
phism D−1Z→ N−1Z.

(c) Show that any localization of Z is of the form P−1Z where P is a subset of
the set of primes in N. [You need to identify the set P for a given D and
show that P−1Z ∼= D−1Z].

(d) Let P be a subset of the prime integers. Identify all the ideals in P−1Z.
Which ideals are prime?

Exercises 4.7.8. Let R be an integral domain and let D be a multiplicative subset
of R. We will consider R as a subset of D−1R via the embedding ϕ : R −→ D−1R
which takes r to r/1.

(a) Let D−1I = {a/s : a ∈ I, s ∈ D}. Show D−1I is an ideal in D−1R.

(b) Show that D−1I = D−1R if and only if I ∩D 6= ∅.
(c) Let J be an ideal of D−1R. Show that J ∩R is an ideal in R.

Parts a - c show we have a function from the set of ideals in D−1R to the set
of ideals in R given by J 7→ J ∩ R and a function from the set of ideals in R to
the set of ideals in D−1R given by I 7→ D−1I.

(d) Show that I 7→ D−1I is surjective: That is, show that every ideal in D−1R is
D−1I for some ideal I in R. (Hints: If J is an ideal in D−1R then an element
of J may be written a/s for a ∈ R and s ∈ D. Show that D−1(J ∩R) = J .)

(e) Show that these two maps of ideals respect intersections. For example,
D−1(I ∩ I ′) = D−1(I) ∩D−1(I ′).

(f) The map I 7→ D−1I is not injective. Show that it is injective on prime ideals
that don’t meet D. Conclude that the functions J 7→ J ∩ R and I 7→ D−1I
give a 1-1 correspondence between prime ideals of D−1R and prime ideals of
R not meeting D.
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Exercises 4.7.9. Let R be an integral domain. A multiplicatively closed set D ⊆ R
is saturated when

xy ∈ D ⇐⇒ x ∈ D and y ∈ D.

There is a theorem saying D is saturated if and only if R \D is a union of prime
ideals. Prove one direction of this result as follows.

(a) Let P be a set of prime ideals and let D = R \
(
∪P∈P P

)
. Show that D is

multiplicatively closed and saturated.
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Chapter 5

Fields

5.1 First Fields and Automorphisms

Definition 5.1.1. A field is a set F with two binary operations, + and ∗, called
addition and multiplication, two special elements 0 and 1, and two unary opera-
tions, a 7−→ −a, and, for all but the 0 element, a 7−→ a−1 such that

• F is an abelian group under + with identity element 0 and additive inverse
a 7−→ −a.

• F ∗ = F \ 0 is an abelian group under ∗ with identity element 1 and multi-
plicative inverse a 7−→ a−1.

• Multiplication distributes over addition: a ∗ (b+ c) = a ∗ b+ a ∗ c.

There are a few fields that should be familiar to you; the following were dis-
cussed in the first chapter.

• The rational numbers Q. This is the smallest field that contains the integers.

• The prime fields, Fp for each prime number p. A fundamental result from
modular arithmetic is that each nonzero element in Z/p, the ring of integers
modulo p, is invertible. One can compute the inverse of a nonzero element
by using the extended Euclidean algorithm. This shows that Z/p is a field.
When studying fields we will write Fp instead of Z/p.

• The real field, R.

• The field of complex numbers C. The complex numbers also form a vector
space of dimension 2 over R with basis {1, i} where i =

√
−1. That is,
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every element can be written in a unique way as a+ bi for a, b ∈ R and the
properties of a vector space hold for scalar multiplication by a real number.

• Inside the field of complex numbers is the Gaussian rationals (see 1.2)

Q(i) = {a+ bi : a, b ∈ Q}

This is a field, and also a two-dimensional vector space over Q.

Definition 5.1.2. Let K be a field and let F be a subset of K such that F is a
field using the operations ∗K and +K . We say F is a subfield of K and K is an
extension field of F . We will write F ≤ K and also K/F depending on whether
the emphasis is on F being a subfield of K or K and extension of F .

Exercises 5.1.3.

(a) Let F and E be subfields of K. Show that F ∩ E is a subfield of K.

(b) Let F be a set of subfields of K, then⋂
F∈F

F

is a subfield of K.

(c) Let R be a set of subrings of a ring S, then⋂
R∈R

R

is a subring of S.

If F ≤ K then K is a vector space over F . We write [K : F ] for the dimension.
It is also called the degree of the extension.

For any field F , there is a ring homomorphism Z −→ F taking 1 to 1F by
Theorem 4.2.11. If the kernel is trivial then F contains a subring isomorphic to
the integers, and since F is a field it must contain a subfield isomorphic to the
rationals, Q. If the kernel is not trivial, then F contains a subring isomorphic to
Z/m for some integer m. Since F is a field, Z/m cannot have zero-divisors, so m
must be prime. Thus we have two cases, a field F either contains a copy of Fp
or Q. This smallest field contained in F is called its prime field. We say F has
characteristic p, when Fp ≤ F or characteristic 0 in the case Q ≤ F .

As with groups and with rings, a natural topic to investigate is the functions
that respect the structure of fields.

Definition 5.1.4. For fields F and K, a function ϕ : F −→ K is a homomorphism
when
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(1) ϕ is a homomorphim from the group F,+F to K,+K , and

(2) ϕ is a homomorphism from the group F ∗, ∗F to K∗, ∗K .

Applying Proposition 2.2.2, ϕ : F −→ K is a homomorphism of fields if it
respects addition and multiplication:

ϕ(a1 +F a2) = ϕ(a1) +K ϕ(a2), and

ϕ(a1 ∗F a2) = ϕ(a1) ∗K ϕ(a2)

In these two equations I have emphasized that the addition and multiplication
on the left is done in F and the addition and multiplication on the right is in
K. Generally, we follow standard practice and do not write the subscripts on
the operation signs to make the equations more legible. But, don’t forget the
distinction! We will also usually not write the multiplication sign, unless there is
some important reason to use it.

It turns out that a homomorphisms of fields is always injective!

Proposition 5.1.5. Let ϕ : F −→ K be a homomorphism of fields. Then ϕ(a) =
ϕ(b) implies a = b, so ϕ is injective.

Proof. Let ϕ : F −→ K be a homomorphism. Let a be a nonzero element of F .
Since aa−1 = 1F , applying ϕ we get ϕ(a)ϕ(a−1) = 1K . Since 0K does not have a
multiplicative inverse, ϕ(a) cannot be 0K . Thus a 6= 0F implies ϕ(a) 6= 0K .

Now suppose ϕ(a) = ϕ(b). Then ϕ(a−b) = 0K , and the contrapositive of what
we showed in the previous paragraph gives a− b = 0, so a = b.

A homomorphism of fields ϕ : F −→ K is often called an embedding of F in
K since it places an isomorphic copy of F , namely ϕ(F ) inside of K.

The next proposition is completely analogous to results about the composition
of homomorphisms of groups, Proposition 2.2.2, and properties of isomorphisms,
Proposition 2.2.9.

Proposition 5.1.6.

(1) The composition of two field homomorphisms is a field homomorphism.

(2) The composition of two isomorphisms of fields is an isomorphism of fields.

(3) Let ϕ : F −→ K be an isomorphism of fields. The inverse function ϕ−1 :
K −→ F is also an isomorphism of fields.
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Proof. (1) We have already shown that the composition of group homomor-
phisms is a group homomorphism. Thus the composition of two field ho-
momorphisms α : F −→ H and β : H −→ K is is both a homomorphism of
the additive group F,+F to K,+K and a homomorphism of the multiplicate
group F, ∗F to K, ∗K . Therefore β ◦ α is a field homomorphim.

(2) The composition of two bijections is a bijection and the composition of two
isomorphisms is an isomorphism.

(3) We can apply the fact that the inverse of an isomorphism of groups is also
an isomorphism of groups to prove the result in a similar fashion to the first
item.

And now the culmination of this section!

Definition 5.1.7. Let K be a field. The automorphism group of K is the set of
all isomorphisms from K to itself, with the operation of composition. It is written
Aut(K). Let F be a subfield of K. An automorphism σ such that σ(a) = a for
all a ∈ F is said to fix F . The set of automorphisms K that fix F is denoted
Aut(K/F ).

The previous proposition shows that the composition of automorphisms is an
automorphism and that every isomorphism has an inverse, so Aut(K) is a group.
It is a simple exercise to show that the composition of two automorphisms that fix
F also fixes F and that the inverse of an automorphism that fixes F also fixes F .

Corollary 5.1.8. For K a field, Aut(K) is a group under composition. If F is a
subfield of K, Aut(K/F ), the automorphisms of K that fix F , form a group under
composition.

What can we say about automorphisms of the fields introduced above? First
note that any automorphism has to take 1 to itself. Consider an automorphism ϕ
of Q. We must have ϕ(1) = 1. Since ϕ respects addition,

ϕ(1 + · · ·+ 1︸ ︷︷ ︸
b terms

) = ϕ(1) + · · ·+ ϕ(1)︸ ︷︷ ︸
b terms

which shows that ϕ(b) = b for each positive integer b. Since ϕ also respects
additive inverses, ϕ(−b) = −b for positive integers b, so ϕ is the identity map on
the integers. Since ϕ respects multiplicative inverses, ϕ(1/b) = 1/ϕ(b) = 1/b for
any integer b, and since ϕ respects products ϕ(a/b) = ϕ(a)ϕ(1/b) = a/b. Thus
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we have shown that the only automorphism of Q is the identity map. A similar
(shorter argument) shows that the only automorphism of Fp is the identity map.

Notice also that there can be no homomorphism from Q to Fp since any homo-
morphism must be injective. There can’t be a homomorphism from Fp to Q since
we would have to map 1Fp to 1Q, but 1 + · · ·+ 1︸ ︷︷ ︸

p terms

= 0 in Fp while 1 + · · ·+ 1︸ ︷︷ ︸
p terms

6= 0

in Q.
The reals are vastly more complicated, so let’s consider automorphims of C that

fix R; so we consider automorphisms ϕ such that ϕ(r) = r for r ∈ R. We know that
i ∗ i = −1 so ϕ(i) ∗ ϕ(i) = ϕ(−1) = −1. We know there are only two square roots
of 1 in C, so there are only two possibilities: ϕ(i) is either i itself or −i. In the
first case ϕ has to be the identity map, ϕ(a+ bi) = ϕ(a) + ϕ(b)ϕ(i) = a+ bi since
ϕ fixes the reals. In the second case ϕ is the conjugation map: ϕ(a+ bi) = a− bi.
It is clear that the composition of the conjugation map with itself is the identity
map. Thus, Aut

(
C/R

) ∼= Z2.
A similar argument applies to the field Q(i). The field Q has to be fixed,

and the only non-identity automorphims takes a + bi to a − bi. Thus we have
Aut

(
Q(i)

) ∼= Z2.
This simple example is the model for much of our work in this chapter. For a

field K containing another field F , we seek to understand the automorphisms of
K that fix F , and to use that knowledge to better understand the field K.

5.2 Constructing Fields

We have three main tools for constructing new fields.

Construction I: In Section 1.1 we showed that the ring of integers modulo a
prime forms a field, which we write Fp. Similarly, in Section 1.3 we showed
that for F a field and m(x) irreducible, F [x]/m(x) is a field (see Theo-
rem 4.1.9). More generally, for any ring R, Theorem 4.6.11 shows that R/I
is a field whenever I is a maximal ideal.

Construction II: The second method is based on the construction of the rational
numbers from the integers. For an integral domain R, let D = R \ {0} and
form the ring of fractions D−1R as in Section 4.7. This is a field. For the
integral domain F [x] over a field F , the resulting field is written F (x) =
{a(x)/b(x) : a(x), b(x) ∈ F [x] with b(x) 6= 0}.

Construction III: The third method is to take a subfield of a given field. We did
this in Section 1.2 when we introduced the subfield of the complex numbers
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Q(i). Given any field K and a subset S ⊆ K we can take the intersection
of all subfields of K containing S. Exercise 5.1.3 show that this is a field
(letting F be the set of all fields containing S). It contains S and it is, by
construction a subfield of every field containing S. Thus it makes sense to
call it the smallest subfield containing S. We often are interested in the
smallest subfield of K containing a specific subfield F and some additional
set of elements S ⊆ K \ F . We write this F (S). If no subfield is specificied,
we know that this field must contain one of the prime fields Q, or Fp, so we
may write it Fp(S) or Q(S) as appropriate.

With the notation of Construction III, given a subset S of K we may also take
the intersection of all rings containing S and some subfield F , which we write F [S].

There is a relationship between Construction III and the other constructions,
which we can illustrate with two examples inside the complex field. Before intro-
ducing the two examples recall Theorem 4.3.9, which we adapt here as follows.

Theorem Let F be a subfield of a field K. For any s ∈ K there is a unique
homomorphism from F [x] to K that takes x to s, namely

ϕ : F [x] −→ K∑
i

aix
i 7−→

∑
i

ais
i

Definition 5.2.1. Continuing with the notation as stated above, if the homo-
morphism is injective we say that s is transcendental over F . Otherwise s is
algebraic over F . The monic generator of the kernel in the theorem is called the
minimal polynomial of s.

Proposition 5.2.2. If s is algebraic over F then the minimal polynomial of s is
an irreducible polynomial. Consequently, the image of ϕ as defined in the theorem
is a subfield of K. Thus F [s] = F (s). The dimension [F (s) : F ] is equal to the
degree of the minimal polynomial.

Proof. Suppose by way of contradiction, that the monic generator of the kernel is
m(x) and it factors as m(x) = f(x)g(x) ∈ F [x]. Then f(s)g(s) = 0 in K. Since
K is a field either f(s) or g(s) is zero. Suppose the former. Then f(x) is in the
kernel, and is therefore a multiple of m(x). Since f(x) is also a factor of m(x) we
must have that g(x) has degree 0, so it is a constant. This shows that m(x) is
irreducible.

Alternatively, we can prove the result by noting that F [x] modulo m(x) is
isomorphic to its image in K, which must be an integral domain. Since a reducible
polynomial yields a quotient ring with zero divisors by Corollary 4.1.10, the kernel
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must be generated by an irreducible polynomial. Moreover, the quotient of F [x]
by an irreducible polynomial is a field, so the image of ϕ is actually a subfield of
K.

Note that the image of ϕ consists of polynomials in s. Thus the smallest ring
containing F and s is also the smallest field containing F and s: F [s] = F (s). We

note also that this is
{∑n−1

i=0 ais
i
}

where n = deg(m(x)), since the polynomials

of degree less than n form a system of representatives for F [x]/m(x). Since each
element of F [s] is uniquely expressed as a polynomial in s of degree less than
deg(m(x)), the degree of the extension F (s)/F is equal to deg(m(x)).

Proposition 5.2.3. If K contains some transcendental element over F then [K :
F ] is infinite. Conversely, if K is finite dimensional over F then every element of
K is algebraic over F .

Proof. Suppose that α ∈ K is transcendental over F . Then F [α] is isomorphic
to F [x] since it is the image of the injective homomorphism ϕ : F [x] −→ K that
takes x to α and fixes F . In F [x] the powers of x, xi, are linearly independent,
so F [x] is infinite dimensional over F . Since F [α] is isomorphic to F [x], it is also
infinite dimensional over F . Since K contains F [α] it is infinite dimensional over
F .

Example 5.2.4. Consider the homomorphism ϕ : Q[x] −→ C that takes x to i =√
−1. This is not injective, the kernel is x2 + 1 and the image is Q[i], the ring of

polynomials in i with rational coefficients. It is isomorphic to Q[x]/(x2 + 1). This
is a field because x2 + 1 is irreducible. Thus the field Q(i) = Q[i].

Similarly, Q(
√

2) ∼= Q[x]/(x2 − 2) and Q( 3
√

2) ∼= Q[x]/(x3 − 2). The latter
example is subtle though. There are three cube roots of 2 in C, the others are
3
√

(2)ω and 3
√

(2)ω2 where ω = (1 −
√

3i)/2. Define ϕ : Q[x] −→ C by ϕ(x) =
3
√

(2)ω. This gives Q( 3
√

2ω) ∼= Q[x]/(x3 − 2). We may do the same for 3
√

2ω2, so
there are three embeddings of Q[x]/(x3 − 2) in C.

Example 5.2.5. Consider the homomorphism ϕ : Q[x] −→ C that takes x to e
where e is the Euler number e ≈ 2.71. It is not obvious, but e is transcendental,
not algebraic []. The homomorphism ϕ is therefore an isomorphism of Q[x] with
its image Q[e]. The smallest field containing Q[e] is

Q(e) =

{
f(e)

g(e)
: f(e), g(e) ∈ Q[e] and g(e) 6= 0

}
The stipulation that g(e) 6= 0 is simply requiring that the coeffiecients of g not all
be zero, since no nonzero polynomial in Q[x] evaluates at e to 0.

The number π ≈ 3.14 is also transcendental [] so there is an isomorphism
between Q[x] and Q[π] and between Q(x) and Q(π).
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The set of algebraic numbers (the complex numbers algebraic over Q) is ac-
tually countable, while the complex numbers (and therefore the transcendental
numbers) are uncountable.[]

Adjoining a root

Our focus henceforth is on Construction I. Let m(x) be a monic irreducible poly-
nomial of degree n > 1 over a field F . Let m(x) = xn+mn−1x

n−1+· · ·+m1x+m0.
In the quotient ring F [x]/m(x) the coset x+ 〈m(x)〉 satisfies

(x+ 〈m(x)〉)n +mn−1(x+ 〈m(x)〉)n−1 +mn−2(x+ 〈m(x)〉)n−2 + · · ·
· · ·+m2(x+ 〈m(x)〉)2 +m1(x+ 〈m(x)〉) +m0

= (xn +mn−1x
n−1 +mn−2x

n−2 + · · ·+m2x
2 +m1x+m0) + 〈m(x)〉

= 0 + 〈m(x)〉

In other words, we may think of m(x) as having a root in F [x]/m(x), namely the
coset x+ 〈m(x)〉.

It is common therefore to give this coset a new symbol, let’s call it α, and to
speak of the quotient ring as follows: We adjoin a root α of m(x) to obtain the
field F (α) in which x−α is now a factor of m(x). In the polynomial ring F (α)[x],
we can then factor m(x) by dividing m(x) by x−α. A natural question is whether
m(x)/(x− α) is now irreducible, or does it factor completely (into linear factors),
or something in between?

The upcoming sections explore this question. It is clear though that if deg(m(x)) =
2 then adjoining a root of m(x) will factor m(x) completely, since the quotient
m(x)/(x− α) will be another linear factor.

More generally, over Q, every extension by a root of a quadratic is isomorphic
to Q(

√
D) for some square free integer D. The exercise below steps through the

proof.

Exercises 5.2.6. Let m(x) = x2+ax+b be an irreducible quadratic over Q.

(a) Use the quadratic formula to find two distinct embeddings of Q[x]/m(x) into
C.

(b) Show that these two embeddings have the same image (although the image
of x+ 〈m(x)〉 itself is different in the two cases.

(c) Show that there is some square free integer D such that Q(
√
D) is the same

field as the one determined by Q[x]/m(x).

(d) Conclude that every degree 2 extension of Q is isomorphic to Q(
√
D) for

some square free integer D. [Suppose K is a degree 2 extension of Q and let
α ∈ K \Q.]
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(e) Conclude also that every degree 2 extension of Q has one non-trivial auto-
morphism.

Finally, we have this relationship between an automorphim of a field extension
and the minimal polynomial of an element in the extension.

Proposition 5.2.7. Let K be an extension of F . Let α ∈ K have minimum
polynomial m(x) over F . For any σ ∈ Aut(F/K), σ(α) is also a root of m(x).

Proof. Let m(x) = xd +md−1x
d−1 + · · ·+m0 be the mimimum polynomial for α

over F . Each mi ∈ F so

σ
(
m(α)

)
= σ

(
n∑
i=1

miα

)

=
n∑
i=1

σ(miα) since σ respects sums,

=
n∑
i=1

miσ(α) since σ respects products and fixes elements of F

= m (σ(α))

Since m(α) = 0 we have m(σ(α)) is also 0.
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5.3 Finite Fields

In this section we characterize finite fields by proving the existance and uniqueness
of a field of order pn for any prime p and n ∈ N, and by revealing the structure of
these fields and of their automorphism groups.

Theorem 5.3.1. Let K be a field with a finite number of elements.

(1) K has pn elements for some prime p and n ∈ N.

(2) Each element of K is a root of xp
n − x, so xp

n − x factors completely, into
distinct linear factors, over K.

(3) There is an element η ∈ K whose powers η1, η2, . . . , ηp
n−1 = 1 give all the

nonzero elements of K. Consequently, K∗ is cyclic of order pn − 1.

(4) K is isomorphic to Fp[x]/m(x) for some irreducible polynomial m(x) of de-
gree n over Fp. Furthermore m(x) is a factor of xp

n − x.

For any prime p and any positive integer n:

(4) There exists a field with pn elements.

(5) Any two fields with pn elements are isomorphic.

We use Fpn to denote the unique field with pn elements. The automorphism group
of Fpn satisfies:

(6) Aut(Fpn) is generated by the Frobenius map, ϕ(β) = βp for β ∈ Fpn.

(7) Aut(Fpn) ∼= Z/n.

As a first step we prove

Proposition 5.3.2. A finite field is a vector space over Fp for some prime p.
Consequently, the number of elements of K is a power of p.

Proof. Suppose that K is a finite field. The smallest field contained in K, its prime
field, must be Fp for some prime number p.

From the definition of a field we can see that K satisfies the properties for
a vector space over Fp. For example: if a ∈ Fp and β, γ ∈ K then a(β + γ) =
aβ + aγ follows from the distributive law, but may be also considered as the
property concerning scalar multiplication (by α) of a sum of vectors, β + γ. If the
dimension of K over Fp is n then K has a basis u1, . . . , un and the elements of K
are a1u1 + . . . , anun for ai ∈ Fp. Thus K must have pn elements.
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Suppose that q = pn is the number of elements in K. By the definition of a
field, the set of nonzero elements of K is a group under multiplication. This group
is denoted K∗. Recall that the order of an element α in a group G is the smallest
positive integer r such that αr is the identity, or infinity, if no such r exists. The
order of an element divides the order of the group (Lagrange’s theorem).

Proposition 5.3.3. Let K be a field with pn elements. The polynomial xp
n − x

factors completely, into distinct linear factors, over K.

xp
n−1 − 1 =

∏
α∈K∗

(x− α) and,

xp
n − x =

∏
α∈K

(x− α)

Proof. The multiplicative group K∗ has pn − 1 elements, so each element α ∈ K∗
has order dividing pn−1. Thus each α ∈ K∗ is a root of xp

n−1−1 and each α ∈ K
is a root of xp

n − x. Since roots correspond to factors of a polynomial, we have pn

linear factors of xp
n − x, one for each element of K. Their product has degree pn

so must be equal to xp
n − x.

Recall the following properties from Theorem 2.1.11 and problems immediately
following it.

Theorem Let α be an element of order r in an group G.

(1) αi = αj iff i ≡ j mod r.

(2) The order of αi is r/d where d = gcd(i, r).

(3) Let G be abelian. Let β ∈ G have order s, coprime to r = ord(α). Then
ord(αβ) = rs.

(4) Let G be abelian. If α1, . . . , αn have orders r1, . . . , rn where the ri are pair-
wise coprime, then ord(

∏n
i=1 αi) =

∏n
i=1 ri.

Now we can establish item (3) of the Theorem.

Proposition 5.3.4. The multiplicative group of a finite field is cyclic.

Proof. Let K have pn elements and let the prime factorization of pn−1 be
∏r
i=1 q

bi
i .

We will show below that for each i = 1 . . . , r there is an element ηi ∈ K∗ of order
qbii . Let η =

∏r
i=1 ηi. Since the qbii are coprime to each other, the theorem above

shows that the order of η is
∏r
i=1 q

bi
i = pn−1. Thus η generates the multiplicative

group of K.
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Now we prove the claim. Suppose that q is prime and qb appears in the prime
factorization of pn − 1, so qb divides pn − 1 but qb+1 does not. Let t = (pn − 1)/qb

and consider the set S = {αt : α ∈ K∗}. For any β ∈ S the polynomial xt − β
has at most t roots so there can be at most t elements of K whose tth power is
β. Therefore the cardinality of S is at least (pn − 1)/t = qb. On the other hand,

everything in S is a root of xq
b − 1 since

(αt)q
b

= αp
n−1 = 1

There can be only qb roots of xq
b − 1, so S has at most qb elements. This shows

|S| = qb. Similarly, at most qb−1 of the elements in S can be roots of xq
b−1 − 1 so

there must be at least qb − qb−1 elements of S whose order in K is qb. This shows
what we wanted: there is some element of K of order qb.

Definition 5.3.5. An element of a finite field whose powers generate the nonzero
elements of the field is called primitive.

Proposition 5.3.4 says that every finite field has a primitive element. Further-
more, from the lemma, if η is primitive in a field of pn elements then ηk is also
primitive whenever k is coprime to pn − 1. Thus there are ϕ(pn − 1) primitive
elements, where ϕ is the Euler totient function (ϕ(n) is the number of positive
integers less than n and coprime to n).

To prove item (4) of the Theorem we need to use the minimal polynomial of a
primitive element.

Proposition 5.3.6. Let K be a finite field of pn elements. Let η be any primitive
element of K, let ϕ : Fp[x] −→ K take x to η and let m(x) generate the kernel (so
m(x) is the minimal polynomial of η over Fp). Then K is isomorphic to Fp[x]/m(x)
and degm(x) = n. Furthermore, m(x) divides xp

n−x and m(x) factors completely
in K.

Proof. From the first isomorphism theorem, ϕ gives rise to an isomorphism from
Fp[x]/m(x) to its image in K. This image must be a field since m(x) must be
irreducible. But the image of ϕ contains η and therefore all of its powers. Thus
the image is all of K and we have K ∼= Fp[x]/m(x). The dimension of K is n and
the dimension of Fp[x]/m(x) is deg(m(x)) so the degree of m(x) is n.

By Proposition 5.3.3, xp
n − x factors into linear factors in K and η is one of

the roots. This implies that xp
n − x is in the kernel of ϕ, so m(x) divides xp

n − x.
Since xp

n − x factors completely in K so to does m(x).

We can now prove existence and uniqueness for fields of prime power order.
We will need the “Freshman’s dream”:
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Proposition 5.3.7. Let α, β be elements of a field of characteristic p. Then
(α+ β)p = αp + βp.

Proof. Expanding (α+ β)p using the binomial theorem we get terms like(
p

k

)
αkβp−k

The binomial coefficient really means 1 added to itself
(
p
k

)
times. Since p divides

the binomial coefficient when 1 < k < p the coefficient is 0 unless k = 0 or k = p.
That gives the result.

Proposition 5.3.8. For any prime power there exists a unique field of that order.

Proof. Uniqueness: Let K and K ′ be two fields with pn elements. Let η be a
primitive element in K and let m(x) be its minimal polynomial over Fp. The
previous proposition showed that η is a root of xp

n − x, and m(x) divides xp
n − x.

By Proposition 5.3.6, xp
n −x factors into distinct linear factors in both K and K ′

so there must be a root of m(x) in K ′. Call this root η′. Then the homomorphism
from Fp[x] to K ′ that takes x to η′ must have image that is a subfield of dimension
n in K ′, and is therefore all of K ′. By Proposition 5.3.6, both K and K ′ are
isomorphic to Fp[x]/m(x) so they are isomorphic to each other.

Existence: By successively factoring xp
n −x and adjoining roots of a nonlinear

irreducible factor, we can, after a finite number of steps, arrive at a field in which
xp

n − x factors completely. I show below that the roots of xp
n − x form a field.

Since the derivative of xp
n − x is −1, xp

n − x does not have multiple roots, so
by the roots-factors theorem it has exactly pn roots. Thus we have a field of pn

elements.
To show the roots of xp

n −x form a field, we need to show that the sum of two
roots is a root, that the additive inverse of a root is a root, that the product of two
roots is a root and that the multiplicative inverse of a root is a root. These are all
trivial except for the case of the sum of two roots, which can be proved using the
“Freshman’s dream.”

Definition 5.3.9. Let K be a finite field and let p(x) be a polynomial over K. If
p(x) is irreducible and the class of x is primitive in K[x]/p(x), then we say p(x) is
a primitive polynomial.

Example 5.3.10. There is a unique irreducible polynomial of degree 2 over F2,
x2 +x+ 1. Let’s use it to construct the field F4 as F2[x]/(x2 +x+ 1). Let η be the
congruence class x+ 〈x2 + x+ 1〉, then η is a root of x2 + x+ 1. We say that we
have adjoined η to F2 to create the field F4. The elements of F4 are polynomials in
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η of degree less than 2: F4 = {0, 1, η, η + 1}. Addition is component-wise (relative
to the basis {1, η}). Multiplication must take account of η2 = η + 1. Here is a
multiplication table for this field.

∗ 1 η η + 1

1 1 η η + 1

η η η + 1 1

η + 1 η + 1 1 η

We can also see that η is a primitive element. Since F∗4 has 3 elements, any
element besides 1 generates F∗4. An alternative to compute in this field is by making
a table of powers of η and the corresponding polynomials in η as follows.

exponential form polynomial form

1 1
η η
η2 η + 1

The following example shows that there can be many ways to construct a given
field.

Example 5.3.11. Let p = 2. We can construct the field F23 by adjoining to F2 a
root η of the irreducible polynomial m(x) = x3 + x+ 1. Since the degree of m(x)
is 3, the elements of the field will be polynomials of degree less than 3 in η.

Here is the “dictionary” between powers of η and corresponding polynomials
in η. We use η3 = η + 1 to compute successive rows in the table.

exponential form polynomial form

1 1
η η
η2 η2

η3 η + 1

η4 η2 + η

η5 η2 + η + 1

η6 η2 + 1

The next line in the table would be

η7 = η3 + η = η + 1 + η = 1

This is to be expected, since F∗8 is a cyclic group of order 7. Note that every
element of F∗8 except 1 is primitive, since 7 is prime.
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We can use this table to verify that η2 is another root of x3 + x+ 1

(η2)3 + η2 + 1 = η6 + η2 + 1

= 0

Similarly η4 is also a root.

(η4)3 + η4 + 1 = η12 + η4 + 1

= η5 + η4 + 1

= (η2 + η + 1) + (η2 + η) + 1

= 0

The Finite Field Theorem says that there is a unique field of order 8 so every
irreducible polynomial of degree 3 over F2 must have roots in the field that we
constructed. There are 2 monic irreducible polynomials of degree 3 over F2: x

3 +
x+ 1, which we used to construct this field, and x3 + x2 + 1.

Similar computations show that η3, η5 and η7 are the roots of x3 + x2 + 1.
Here is a multiplication table (omitting 0) for the representation of F8 using

x3 + x+ 1.

∗ 1 η η + 1 η2 η2 + 1 η2 + η η2 + η + 1

1 1 η η + 1 η2 η2 + 1 η2 + η η2 + η + 1

η η η2 η2 + η η + 1 1 η2 + η + 1 η2 + 1

η + 1 η + 1 η2 + η η2 + 1 η2 + η + 1 η2 1 η

η2 η2 η + 1 η2 + η + 1 η2 + η η η2 + 1 1

η2 + 1 η2 + 1 1 η2 η η2 + η + 1 η + 1 η2 + η

η2 + η η2 + η η2 + η + 1 1 η2 + 1 η + 1 η η2

η2 + η + 1 η2 + η + 1 η2 + 1 η 1 η2 + η η2 η + 1

Now we consider the automorphism group of a finite field. Recall that any
automorphism has to take 1 to itself, and must therefore fix the subfield Fp.

Proposition 5.3.12. The automorphism group of Fpn is cyclic of order n, gener-
ated by the Frobenius map ϕ : α 7−→ αp.

Proof. The Frobenius map respects addition, by the Freshman’s dream, and it
clearly respects multiplication: ϕ(αβ) = (αβ)p = αpβp = ϕ(α)ϕ(β). Thus ϕ is a
homomorphism of fields. Since a homomorphism of fields must be injective, and
since an injective function on a finite set is also surjective, we conclude that ϕ is
an automorphism.
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Repeatedly composing the Frobenius with itself gives other automorphims and
one can inductively establish the formula: ϕt(α) = αp

t
. Since F∗pn has order pn−1

we have for α 6= 0, ϕn(α) = αp
n

= αp
n−1 ∗ a = 1 ∗ α = α.

Thus ϕn is the identity map. I claim no lower power of ϕ is the identity map.
Suppose that ϕr is the identity automorphism and let η be primitive in Fpn . Then
η = ϕr(η) = ηp

r
, so ηp

r−1 = 1. Since η is primitive it has order pn − 1, so we see
r ≥ n as claimed.

We need to show that there are no other automorphisms of Fpn . Let η be
primitive, and let m(x) = xn +mn−1x

n−1 + · · ·+m0 be its mimimum polynomial.
The lemma showed that ϕr(η) = ηp

r
is another root of m(x). Since η is primitive,

η, . . . , ηp
n−1

are all distinct and thus they form the complete set of roots of m(x).
Let σ be an arbitrary automorphim of Fpn . Then σ must take η to one of these

other roots of m(x). The action of σ on η determines σ completely, so if σ(η) = ηp
r

then σ = ϕr.
In conclusion Aut(Fpn) is cyclic of order n, and is generated by ϕ.

Example 5.3.13. Consider now the degree 3 extension of F3, the field with 27
elements, F27. In this field there is just one subfield F3, so there are 24 elements
that have a minimal polynomial of degree 3. Each of these minimal polynomials
factors completely in F27 by Proposition5.3.6. Thus we have 24/3 = 8 monic
irreducible polynomials of degree 3 over F3.

Another way to count the number of irreducible monic polynomials of degree 3
over F3 is to count the number of monic reducible polynomials and subtract that
from the total number of monic polynomials. There are 27 monic polynomials of
degree 3, since we choose 3 coefficients from F3. A reducible polynomial is either
the product of 3 linear factors or the product of a linear and a quadratic irreducible.
There are 3 monic linear polynomials, and 3 monic quadratic irreducibles, so 9 pos-
sible products. For a product of linear monic polynomials we choose 3 factors with
replacement from the 3 linear polynomials, so there are

(
3+2
3

)
= 10 possibilites.

Thus the number of irreducibles shoule be 27− 9− 10 = 8. That checks with our
computation from the previous paragraph.

The multiplicative group F∗27 is cyclic of order 26. In Z/26 the odd numbers,
other than 13, are all generators for the group so there are 12 generators. Conse-
quently in F∗27 there are 12 primitive elements. Each is a root of one of the monic
irreducible polynomials of degree 3, so we expect 12/3 = 4 different primitive
monic polynomials of degree 3.
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Here are the monic irreducibles of degree 3 over F3 that are not primitive

x3 + 2x2 + 2x+ 2,

x3 + x2 + x+ 2

x3 + 2x+ 2

x3 + x2 + 2,

and here are the ones that are primitive.

x3 + 2x+ 1

x3 + 2x2 + x+ 1

x3 + x2 + 2x+ 1

x3 + 2x2 + 1

5.4 Problems

Exercises 5.4.1. Irreducible polynomials over F2

(a) (Discussion) Find all irreducible polynomials over F2 of degree at most 4.
You should justify your list.

(b) (HW) Find all all irreducible polynomials over F2 of degree 5. Use the
list from part (a) to explain your result. Notice any patterns in the list of
polynomials.

(c) (HW) Determine how many irreducible polynomials of degree 6 there are
over F2 based on part (a). Justify your answer briefly.

Exercises 5.4.2. (Discussion) The field F23 .

(a) Construct the field F8 using one of the polynomials from the previous prob-
lem that has the appropriate degree (there are two). Make a table showing
the powers of the primitive element, call it η, and the corresponding vector
form, using the basis {1, η, η2}.

(b) Show that the polynomial that you did not choose also has roots in F8.

Exercises 5.4.3. (HW)

(a) One of the irreducible polynomials of degree 4 in 11.1(a) has roots which are
not primitive. Which one?

(b) Construct the field with 16 elements using one of the primitive irreducible
polynomials of degree 4: Make a table showing the powers of the primi-
tive element, call it η, and the corresponding vector form, using the basis
{1, η, η2, η3}. Give also the multiplicative order of each element and its min-
imal polynomial.
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(c) Identify the subfield F4.

(d) Factor over F4 the irreducible polynomial that you chose to construct F16.

(e) How many elements of F16 are primitive?

Exercises 5.4.4. (HW) The field F32 .

(a) Write a multiplication table for F3[x]/〈x2 + x+ 2〉. [You may omit 0. It may
be easier to take the elements in the order 1, x, x+ 1, x+ 2 followed by twice
each.]

(b) Find all irreducible polynomials of degree 2 over F3 and find their roots in
the table you constructed.

Exercises 5.4.5. (HW) Factoring a polynomial over different fields.

(a) Factor x9 − x over F3.

(b) Factor x5 + x4 + 1 over F2 (it is reducible!), F4 and F8.

(c) Factor x16 − x over F2, F4, F8 and F16.

Exercises 5.4.6. Let n > m be positive integers and d = gcd(n,m). Show that the
intersection of Fpm and Fpn is Fpd as follows.

(a) Recall that the remainder xn − 1 divided by xm − 1 is xr − 1 where r is the
remainder when n is divided by m.

(b) Show that the gcd of xn − 1 and xm − 1 is xd − 1.

(c) (HW) Combine the previous results and the theorem that the roots of xp
n−x

are the elements of Fpn to conclude that Fpd is a subfield of Fpn iff d divides
n. (Strictly speaking Fpn has a subfield isomorphic to Fpd . See 11.10.)

Exercises 5.4.7. (Optional)The field F81.

(a) (Discussion) The polynomials x2 +x+2 and x2 +2x+2 are both irreducible
over F3. Can you construct F81 by using one of these polynomials and then
the other?

(b) (Optional) In a computer algebra system use m(x) = x4 + x+ 2 and r(x) =
x4 + 2x + 2 to construct two versions of F81. Using a brute force search,
find a root of m(x) in the second field and a root of r(x) in the first field.
These give isomorphisms between the two fields. Check by hand that each
composition is an automorphism of the appropriate version of F81.

(c) (Optional) Factor x80 − 1 over F3. For each irreducible factor a(x), find the
roots of a(x) in F3[x]/m(x).

Exercises 5.4.8. (Optional)The field of 64 elements.

(a) The polynomials m(x) = x6 + x + 1 and r(x) = x6 + x5 + x4 + x + 1 are
both irreducible over F2. Using a computer algebra system construct two
versions of F64, using m(x) for one and r(x) for the other. Using a brute
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force search, find a root of m(x) in the second field and a root of r(x) in the
first field. These give isomorphisms between the two fields. Check by hand
that each composition of the two isomorphisms is an automorphism of the
appropriate version of the field.

(b) Factor x63−1 over F2. For each irreducible factor a(x), find the roots of a(x)
in F2[x]/m(x). Use Sage, but also use your understanding of the theory.

(c) The field F64 can also be constructed as an extension of F4. Construct F4,
then factor x63−1 in F4[x]. Choose one of the factors of degree 3 to construct
F64.

(d) Now create F8 using an irreducible polynomial of degree 3 over F2, then
factor x63 − 1, then create F64 using an irreducible polynomial of degree 2
in F8[x].

Exercises 5.4.9. (Challenge) The number of irreducible polynomials.

(a) Let a(n) denote the number of degree-n irreducible polynomials over Fp for
p prim4. Prove that

pn =
∑
d|n

d·a(d).

Hint: use the result about the factorization of xp
d − x factors over Fpd and

about subfields of Fpn .

(b) Prove that

lim
n→∞

a(n)

pn
= 0,

meaning that irreducible polynomials are “sparse” in Fp[x].

Exercises 5.4.10. (Challenge) The algebraic closure of Fp. This problem extends
11.6, which showed that we may consider Fpd as contained in Fpn if and only if
d|n.

(a) Let Fp =
⋃
t≥1 Fpt . Prove that F is a field.

(b) Prove that Fp is algebraically closed.

(c) Prove that every element of Fp is algebraic over Fp so there is no algebraically
closed field properly contained in Fp.

(d) Conclude that Fp is the algebraic closure of Fpn for any n.

Exercises 5.4.11.

(a) Make a table showing the possible multiplicative orders and the number of
elements of each order for F64, F128, and F256. Relate this information to
subfields (refer to the previous problem).
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Exercises 5.4.12. Irreducible polynomials over Fp. Suppose you have formulas for
the number of irreducible monic polynomials of degree m over Fp for each m < n.
Using some combinatorial arguments you can then compute the number of monic
reducible polynomials of degree n. Subtracting this from the number of monic
polynomials of degree n yields the number of monic irreducible polynomials of
degree n.

(a) Show that the number of monic irreducible quadratics over Fp is (p2− p)/2.

(b) Show that the number of monic irreducible cubics over Fp is (p3 − p)/3.

(c) You might want to guess at a general formula. A different counting method
yields the result more easily than the one above. Try this if you want, noting:

• For a ∈ Fpn , a is in no proper subfield iff the minimal polynomial for a
has degree n.

• Each monic irreducible of degree n has n distinct roots in Fpn .

Exercises 5.4.13. For a given prime p, let I(d) be the set of irreducible polynomials
of degree d over Fp.

(a) Show that for n > 0, ∏
d|n

∏
f∈I(d)

f = xp
n − x

(b) Show that for any α ∈ Fq,

1 + α+ α2 + α3 + · · ·+ αq−2 =


1 if α = 0

−1 if α = 1

0 otherwise

Exercises 5.4.14. Simplifying the task of finding irreducibles.

(a) Let a ∈ F∗q . Show that there is an automophism ma of Fq[x] that fixes
elements of Fq and takes x to ax.

(b) Argue that f(x) is irreducible if and only if ma(f(x)) is.

(c) Show how this may be used to simplify the search for irreducible polynomials
of degree d to those of the form xd + xd−1 + · · · or those of the form xd +
0xd−1 + · · ·

(d) In the second case (the coefficient of xd−1 is 0) how can the simplifying
technique be extended?

(e) Show that f(x) is primitive if and only if ma(f(x)) is primitive.

(f) Apply these result to small fields to find all irreducible polynomials of degree
2, 3 or 4 over Fq. Then find the primitive polynomials.
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Chapter 6

On Beyond Z and k[x]
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6.1 The Integers, k[x]: Big Questions

This section elaborates on other analogous results between Z and k[x] for k a field.
We include some major conjectures about the integers.

The analogies between Z and k[x]

The fundamental theorems that we have seen for the integers and k[x] are the
Quotient-Remainder Theorem, the Greatest Common Divisor Theorem, the Eu-
clidean Algorithm, the Prime-Irreducible Theorem (Euclid’s lemma), and Unique
Factorization (the Fundamental Theorem of Arithmetic). We have also seen the
parallels between modular arithmetic and k[x]/m(x). These parallels extend to
comparison of the rational numbers and the field of rational polynomials, k(x)
and, beyond that, to number fields and function fields of curves.

Definition 6.1.1. Let D = Z \ {0}. The rational numbers are Q = D−1Z. A
number field is a finite extension of the rational numbers. Each number field
K is defined (although not uniquely) by an irreducible polynomial m(x) ∈ Q[x].
K = Q[x]/m(x).

Definition 6.1.2. Let k be a field and let D = k[x] \ {0}. The field of rational
polynomials is k(x) = D−1(k[x]). An finite field extension of k(x) is a function
field.

For example, a polynomial in two variables, f(x, y) may be considered an
element of k[x][y] let us suppose

f(x, y) = fn(x)yn + fn−1(x)yn−1 + · · ·+ f1(x)y + f0(x)

Dividing by the coefficient of the highest degree term in y we get an element of
k(x)[y] that is monic, as a polynomial in y.

f(x, y)

fn(x)
= yn +

fn−1(x)

fn(x)
yn−1 + · · ·+ f1(x)

fn(x)
y +

f0(x)

fn(x)

Let us assume this polynomial is irreducible. The original polynomial f(x, y)
defines a curve: the set of ordered pairs (a, b) ∈ k2 such that f(a, b) = 0. We call
the field

K = k(x)[y]/f(x, y)

The function field of f(x, y). Note that computing modulo f(x, y) and modulo
f(x, y)/fn(x) gives the same result since they differ by a unit in k(x)[y].
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Example 6.1.3. Let m(y) = y3 − (x3 − x). Trust me, this is irreducible (you can
use Eisenstein’s criteria as we will see later). The function field from m(y) is

K = k(x)[y]/(y3 − (x3 − x))

Each element of K is uniquely represented as a polynomial in y of degree at most
2 with coefficients from k(x).

The analogy between number fields and function fields of curves is particularly
strong for the specific case when the base field is finite.

The Riemann hypothesis and Weil conjectures

The Riemann zeta function is a very important tool in analytic number theory
that is related to the distribution of prime numbers. More specifically, through
various transformations it gives information about the number of primes less than
a given integer.

The Riemann zeta function ζ is defined by

ζ(s) =
∞∑
n=1

1

ns

With some manupulation of infinite series we can write the zeta function as a
product

ζ(s) =
∏

p prime

(1 + p−s + p−2s + p−3s + · · · )

=
∏

p prime

1

1− p−s

The Riemann zeta function can be extended to the complex plane through an-
alytic continuation, and it has poles at the even negative integers. The Rie-
mann hypothesis states that the only other poles are at complex numbers s
with Re(s) = 1/2. If it is true the result would have implications for the distribu-
tion of primes, but they are not easy to spell out succinctly.

The analytic continuation of ζ, the relationship to the distribution of primes,
and other related topics are well beyond what we will study, but the interesting
thing is that there are analogous zeta functions for Fq[x]. In fact, number theorists
consider not only the zeta function above but the generalized zeta functions for
number fields. The Weil conjectures are the geometric analogue. They deal with
zeta functions for curves (and projective varieties of higher dimension) over finite
fields.
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The rather amazing thing is that the Weil conjectures, including the analogue of
the Riemann hypothesis, have been proven, while the original Riemann hypothesis
has not been proven.

The abc conjecture

The abc conjecture, formulated in 1985 by Joseph Oesterlé and David Masser, is
relatively simple to state. From a very high level one can say that it relates the
sum of two numbers with the factorizations of the two numbers and of their sum.

Definition 6.1.4. Let n be an integer with unique factorization n = upe11 p
e2
2 · · · pe

t

t .
The radical of n is the square free positive integer rad(n) = p1p2 · · · pt.

Conjecture 6.1.5 (abc). Let ε > 0. There exist only finitely many triples of
coprime positive integers a, b, c with c = a+ b such that

c > rad(abc)1+ε

One way to gain intuition about this conjecture is to take the extreme case
when a and b are large powers of a small prime (or a small number of small
primes).

Example 6.1.6. Suppose a = 2s and b = 3t. Let c = 2s + 3t and factor c =
pe11 p

e2
2 · · · pe

k

k with each ei ≥ 1. Note that none of the pi is equal to 2 or 3.
The conjecture states that except for a finite number of cases

2s + 3t <
(
2 · 3 · rad(2s + 3t)

)1+ε
Let’s take ε = 1 just to get a sense for what this inequality says (the conjecture
is for arbitrary ε > 0, but 1 is adequate for this example.) Simplifying the right
hand side and substituting the factorization for c = 2s + 3t,

pe11 p
e2
2 · · · p

ek
k < 36(p1p2 · · · pk)2

Consequently,

pe1−21 pe2−22 · · · pek−2k < 36

One easy conclusion to draw is that there can only be a finite number of cases in
which 2s + 3t = pe11 p

e2
2 · · · p

ek
k in which ei ≥ 3 for all i.
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There is an analogous statement for the polynomial ring k[x], but it has been
proven, so it is a theorem not a conjecture. In place of an inequality about the size
of integers we have an inequality about the degree of polynomials. The radical is
defined in analogy to the radical of an integer.

rad
(
u
(
p1(x)

)e1(p2(x)
)e2 · · · (pt(x)

)et) = p1(x)p2(x) · · · pt(x)

Theorem 6.1.7 (Mason-Stothers). Let a(x), b(x), and c(x) be coprime polynomi-
als over a field k such that a(x) + b(x) = c(x) and such that not all of them have
vanishing derivative. Then

max{deg(a(x)),deg(b(x)),deg(c(x))} ≤ deg
(

rad
(
a(x)b(x)c(x)

))
− 1.

The theorem is not difficult to prove, so we will do it later in the course.

Fermat’s last theorem

Fermat’s last theorem became an actual theorem in 1995, many years after it was
proposed in 1637.

Theorem 6.1.8 (Fermat-Wiles). For an integer n ≥ 3. There is no triple of
positive integers a, b, c such that an + bn = cn.

The proof of this result definitely does not fit in the margin of a piece of paper.
Wiles used sophisticated algebra, number theory and algebraic geometry to prove
it.

There is an analogue for polynomials over a field.

Theorem 6.1.9. Let k be a field of characteristic 0 and let n ≥ 3 be an integer.
Suppose that a(x), b(x), and c(x) are three coprime polynomials in k(x) satisfying
a(x)n + b(x)n = c(x)n. Then all three polynomials are constants.

The result can be extended to the case of finite characteristic, but that requires
a subtle additional restriction. The proof of the result for polynomials will be one
of your assigned problems.

Why?

We have just listed three conjectures for the integers (well, one, Fermat’s last
theorem, is now proven) that have analogues for polynomials that are proven.
Two of the polynomial theorems are within our ability to prove. What makes the
polynomial versions easier than the integer versions?
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Exercises 6.1.10. Let R be an integral domain. We would like to formulate a
Quotient-Remainder Theorem and a Euclidean Algorithm for R[x].

(a) Show that the Quotient-Remainder theorem holds with no change, provided
the divisor is monic.

(b) In Z[x] let f(x) = 3x3 + 5x2 + x+ 6 and g(x) = 2x+ 5. Show that there is
a integer m, a Q(x) ∈ Z[x] and an R ∈ Z such that mf(x) = g(x)Q(x) +R.
What is special about m? What kind of uniqueness statement can you make?

(c) Do the same question as in (b) but with g(x) = 3x2 + 2x + 1. Now the
remainder will be a polynomial, R(x), of degree ≤ 1.

(d) With these exercises as motivation, can you formulate a QR theorem for an
arbitrary R[x] with R an integral domain?

6.2 Geometry and Polynomials

Let k be a field. One important difference between polynomials and integers is that
each polynomial in k[x] can be considered as a function: it determines a function
from k to k. Let f(x) ∈ k[x] with f(x) = fnx

n + fn−1x
n−1 + · · ·+ f1x+ f0. The

function defined by f(x) is

f : k −→ k

a 7−→ f(a) = fna
n + fn−1a

n−1 + · · ·+ f1a+ f0

We can think about this geometrically by “graphing” the function in k2. (For
k = R this is the usual notion of graphing, but for C or finite fields one has to be
more schematic.)

We explore and expand on this geometry in this section. We also make use of
the universal property of polynomial rings, Theorem 4.3.9, which we reiterate here
(see also the beginning of Section ??).

Theorem [Universal Property of k[x]] Let k be contained in some ring R. For
any a ∈ R there is a unique homomorphism from k[x] to R that takes x to a,
namely

ϕa : k[x] −→ R∑
i

fix
i 7−→

∑
i

fia
i

This map will be called the evaluation at a homomorphism.
It is important to observe the distinction between the two functions we have

just introduced. The first: given an f(x) ∈ k[x] we have a function that takes k
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to k that evaluates a fixed f(x) at all elements of k. It is not a homomorphism
(except for a very special case). The second: given a ∈ k there is a homomorphism
from k[x] to k. It evaluates all f(x) at a fixed a ∈ k.

The Roots-Factors Theorem

Let’s now think of a fixed f(x) and the graph of f(x) in k2. That is, in the x-y
plane the points (x, f(x)) form the graph of f(x). The intersection of this graph
with the line y = 0 is the set of roots of f(x).

Definition 6.2.1. Let f(x) ∈ k[x]. An element a ∈ k is a root of f(x) when
f(a) = 0.

Theorem 6.2.2. Let f(x) ∈ k[x]. Then a is a root of f(x) if and only if (x−a) is
a factor of f(x). Consequently, if f(x) has degree n then f has at most n distinct
roots.

Proof. From the Quotient-Remainder theorem f(x) = (x−a)q(x)+r(x) for unique
polynomials q(x) and r(x). We also have deg(r(x)) < deg(x−a) so r(x) is actually
a constant, r ∈ k. Now apply the “evaluate at a” homomorphism. We get

f(a) = (a− a)q(a) + r = r

In particular, a is a root of f(x) if and only if f(a) = 0, which is true if and only
if r = 0.

If f(x) has t distinct roots, a1, . . . , at, then it has t distinct factors (x− ai) for
i = 1, . . . , t. Then, by unique factorization, (x − a1)(x − a2) · · · (x − at) divides
f(x). Thus degree f(x) ≥ t.

Definition 6.2.3. We say that a is a root of multiplicity t for f(x) ∈ k[x] when
(x− a)t divides f(x) but (x− a)t+1 does not.

Let’s briefly consider the evaluation at a homomorphism for a fixed a ∈ k.

ϕa : k[x] −→ k

f(x) 7−→ f(a)

The homomorphism is surjective. By the roots-factors theorem, the kernel of this
map is the set of polynomials that are multiples of x−a. That is, the ideal 〈x− a〉.
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6.3 Derivatives

Another important distinction between Q and k(x) (for k be a field). Is that
polynomials have a derivative. We will show that there is a well-defined derivative
function on k[x] without resorting to limits, and which makes sense even over finite
fields. We require that the following properties of the proposed derivative (with
respect to x) hold.

(1) The derivative d maps k[x] to k[x].

(2) d(x) = 1.

(3) Additivity: d(f + g) = d(f) + d(g).

(4) The Product Rule: d(fg) = fd(g) + gd(f).

Exercises 6.3.1. Using just the rules above, show that the following properties
would have to hold for the derivative:

(a) d(0) = 0 [use linearity].

(b) d(1) = 0 [use the product rule].

(c) d(m) = 0 for m = 1 + 1 + · · ·+ 1 (with m terms) [use linearity].

(d) Show that if k = Q then d(a) = 0 for a ∈ Q [use the product rule].

For arbitrary fields we turn the result about Q in the last problem into an
additional assumption:

(5) The derivative of a constant is 0: d(a) = 0 for a ∈ k.

This was proven from the rules (1)-(4) for derivatives in Q[x] in the problem above,
but, more generally, it has to be assumed. In fact, the derivative can be defined
much more broadly (of a ring R relative to a subring (call it k) with property (5)
requiring that the derivative of any element of k is 0).

Exercises 6.3.2. Using the five rules above for the proposed derivative, show that
the following properties would have to hold.

(a) (HW) d(axm) = amxm−1 [induction, product rule].

(b) (HW) d(
∑

m∈N0
amx

m) =
∑

m∈N0
ammx

m−1.

The previous exercises have shown that the assumptions (1)-(5) determine that
a derivative satisfying those rules can have only one possible form.

Definition 6.3.3. Let k be a field, define the derivative with respect to x on
k[x] over k to be the function d defined by

d(
∑
m∈N0

amx
m) =

∑
m∈N0

ammx
m−1
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Exercises 6.3.4. With this definition:

(a) Show that the properties (1)-(5) do indeed hold.

(b) Show that the derivative map is a homomorphism of vector spaces over k.

(c) (HW) Show that the derivative can be extended to the ring of fractions k(x)
and that the quotient rule that you know from calculus must hold (first use
the product rule to establish the reciprocal rule d(1/a(x)) = −a′(x)/(a(x))2).

Exercises 6.3.5. The derivative of a composition of polynomials

(a) Find a formula for the derivative of
(
g(x)

)n
.

(b) Use the previous result to derive the formula for the derivative of a compo-
sition of polynomials, f

(
g(x)

)
, that you learned in calculus. (Write f(x) =

fnx
n + · · ·+ f0.)

Exercises 6.3.6. (HW) Let k be a field of characteristic 0 and f(x) ∈ k[x].

(a) Suppose a is a root of multiplicitym of f . Show that a is a root of multiplicity
m− 1 of f ′(x).

(b) Suppose the unique factorization of f(x) is

f(x) = u
(
p1(x)

)e1(p2(x)
)e2 · · · (pt(x)

)et
with the pi(x) being distinct monic irreducibles. Show that

f ′(x) =
(
p1(x)

)e1−1(p2(x)
)e2−1 · · · (pt(x)

)et−1h(x)

for some h(x) that is not divisible by any of the pi(x).

(c) For f ∈ k[x] and f monic, show that rad(f) = f/ gcd(f, f ′). This shows that
the radical of a polynomial is easy to compute, via the Euclidean algorithm
and polynomial division.

Strange things happen in finite characteristic.

Exercises 6.3.7. Let p be prime and q = pr a power of p. We will consider deriva-
tives in Fpr [x].

(a) Over a field of characteristic 0, the kernel of the derivative map is just the
constant polynomials. What is the kernel for Fq[x]?

(b) Give an example of a polynomial over Fp such that gcd(f, f ′) 6= rad(f).

(c) Consider the polynomial xp − t in Fp(t)[x]. Show that this polynomial is
irreducible. [Assume it factors, take the derivative.]
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6.4 Mason-Stothers Theorem and Fermat’s Last The-
orem for Polynomial Rings

We can now prove the analogues of the abc-conjecture and Fermat’s Last Theorem
for k[x]. We assume the characteristic of k is 0.

Mason-Stothers

In previous exercises we showed rad(f) = f/ gcd(f, f ′). Let’s introduce the unique
factorization of f , f = u

∏t
i=1 p

ei
i with the pi irreducible, ei ≥ 1 and u a constant.

Now introduce some notation for the radical of f , denote it fr, the “excess”, fe,
and another term derived from the derivative that I will call fk.

f = u
t∏
i=1

peii

fr =
t∏
i=1

pi

fe = u

t∏
i=1

pei−1i =
f

fr

Taking the derivative,

f ′ = u
( t∑
i=1

eip
′
ip
ei−1
i

(∏
j 6=i

p
ej
j

))

= u
( t∏
i=1

pei−1i

)( t∑
i=1

eip
′
i

∏
j 6=i

pj

)
= fefk

where,

fk =

t∑
i=1

eip
′
i

∏
j 6=i

pj =
∑
i

eip
′
i

fr
pi

Note that fk is comprime to f : for each irreducible factor pi of f , pi divides all
summands of fk except for the ith term, which it does not divide.

Now we can prove the Mason-Stothers theorem.
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Theorem 6.4.1. Let k be a field of characteristic 0. Let f, g, h be nonconstant
coprime polynomials in k[x] satisfying f + g = h. Then

max
(

deg(f), deg(g), deg(h)
)
< deg

(
rad(fgh)

)
Proof. Note that if any two of f, g, h have a common factor of positive degree then
all do, so it is enough to assume that any two are coprime.

Taking the derivative of both sides of the equation, we have these two equalities:

f + g = h

f ′ + g′ = h′

Multiplying the first by g′ and the second by g we have

fg′ + gg′ = hg′

f ′g + g′g = h′g

Substracting,

fg′ − f ′g = hg′ − h′g

Now we introduce the notation defined above,

frfegegk − fefkgrge = hrhegegk − hehkgrge
fege

(
frgk − fkgr

)
= hege

(
hrgk − hkgr

)
Observe that fe, ge, he are coprime and each divides fg′−f ′g, which equals hg′−h′g.
Therefore the product fegehe divides fg′ − f ′g and consequently,

deg(fe) + deg(ge) + deg(he) ≤ deg(fg′ − f ′g)

Observe also that

deg(f ′g − fg′) ≤ max(deg(f ′g), deg(fg′)) = deg(f) + deg(g)− 1

Now we substitute deg(fe) = deg(f)− deg(fr) and similarly for the others.

deg(f)− deg(fr) + deg(g)− deg(gr) + deg(h)− deg(hr) ≤ deg(f) + deg(g)− 1

Rearranging,
deg(h) ≤ deg(fr) + deg(gr) + deg(hr)− 1
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Using comprimality of f, g, h,

deg(fr) + deg(gr) + deg(hr) = deg(frgrhr) = deg
(

rad(fgh)
)

So
deg(h) ≤ deg(rad(fgh))− 1

The argument is easily reworked to show the same bounds for deg(f) and deg(g).

Exercises 6.4.2. Extend the Mason-Stothers theorem to fields of finite characteristic.

(a) Let f, g, h be nonconstant coprime polynomials in k[x] satisfying f + g = h.
Then either

max {deg(f),deg(g), deg(h)} < deg(rad(fgh))

or each of f , g, and h has derivative 0. [Hint: the key step is either fg′−f ′g =
0 or it does not equal 0.

The analogue of Fermat’s last theorem

Theorem 6.4.3. Let k be a field of characteristic 0 and let n ≥ 3 be an integer.
Suppose that a(t), b(t), and c(t) are three coprime polynomials in k(t) satisfying
a(t)n + b(t)n = c(t)n. Then all three polynomials are constants.

Exercises 6.4.4. Use the Mason-Stothers theorem to prove the analogue of Fermat’s
last theorem for polynomials.

(a) Show that you can assume, without loss of generality, that c(x) has degree
that is greater than or equal to the degrees of a(x), b(x).

(b) Prove the theorem.

(c) (HW) Show that the FLT holds for polynomials that aren’t coprime provided
a(t) and b(t) aren’t associates.

(d) (HW) Show that there do exist polynomials a(t), b(t), c(t) of positive degree
such that a(t)2 + b(t)2 = c(t)2.
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6.5 Unique Factorization Domains

Let R be a unique factorization domain. The goal of this section is to show that
R[x] is also a unique factorization domain. We will make use of unique factorization
in K[x] where K is the field of quotients of R.

Recall that for Z and for k[x], with k a field, a key step in proving unique
factorization was to show the equivalence between irreducibility and primality.
Let us extend the definition of these concepts to an arbitrary integral domain.

Definition 6.5.1. Let R be an integral domain. We say that a divides b, written
a|b, when there is some c such that ac = b. An element p in R is prime when p|ab
implies that either p|a or p|b. An element p is irreducible when p = ab implies
that either a or b is a unit in R.

Observe that p is a prime if and only if 〈p〉 is a prime ideal.

Some comments on uniqueness of factorization

In Z, the unique factorization of an integer is upe11 · · · perr in which the pi are distinct
positive primes, the ei are positive integers, and u is 1 or −1. In k[x] we stated the
unique factorization to be u(p1(x))e1 · · · (pr(x))er in which the pi(x) are distinct
monic polynomials, the ei are positive integers, and u is a nonzero constant (an
element of k). In each case the uniqueness is up to reordering of the prime power
factors, but we did not need to worry about (2x−2)((1/2x) and (x−1)x both being
valid factorizations into irreducibles of x2−x. We chose the monic polynomial once
and for all as the one to use in a standard factorization.

Definition 6.5.2. Let R be an integral domain. Two elements of R are associates
if they differ by a factor that is a unit. That is, if r1, r2 ∈ R we say r1 and r2 are
associates when there is a unit u ∈ R such that r2 = ur1.

It should be clear that the relation of being associates is an equivalence relation.
Additionally, if p is irreducible in R then so are all associates of p.

Henceforth, for our unique factorization domain R we will assume that for each
equivalence class of irreducibles (under the relation of being associates) we have
chosen a unique representative that will be used in the standard factorization.
Unique factorization may then be stated as follows. Let Irr be a set of represen-
tatives for the irreducibles, containing one element from each equivalence class of
irreducible polynomials (under the relation of being associates).

Each element of R may be written in a unique way as u
∏
p∈Irr p

ep . In
which u is a unit, each ep ∈ N0, and only a finite number of the ep are
nonzero.
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The gcd of two elements a, b ∈ R is now uniquely defined. Factor each of
a, b into irreducibles and for each irreducible p take the minimum power that
divides both a and b. Multiply over all irreducibles to get the gcd. Explicitly, if
a = u

∏
p∈Irr p

dp and b = v
∏
p∈Irr p

ep , then gcd(a, b) =
∏
p∈Irr p

min(dp,ep). Similarly,

lcm(a, b) =
∏
p∈Irr p

max(dp,ep).
The field K is a unique factorization domain only in the most trivial sense;

since all nonzero elements are all units, there are no irreducibles. On the other
hand, K inherits a meaningful unique factorization because it was constructed
from R. An element of K can be written a/b with a, b ∈ R. We may express this
“in lowest terms” by factoring a and b and dividing each by their gcd. Thus, using
the factorizations in the previous paragraph, we let P = {p ∈ Irr : dp > ep} and
Q = {p ∈ Irr : dp < ep}, and then

a

b
=
a/ gcd(a, b)

b/ gcd(a, b)

= (uv−1)

∏
p∈P p

dp−ep∏
p∈Q p

ep−dp

This is in lowest terms—the numerator and denominator have no common irre-
ducible factor—and it is the unique expression of a

b in this form.

Proposition 6.5.3. Any element of K can be uniquely expressed in the form uab
in which u is a unit, a and b are the product of elements of Irr, and a and b are
coprime.

Proving R[x] is a UFD

As we said earlier the key step in proving unique factorization is to show the
equivalence between irreducibility and primality.

The first step, an easy one, is that one direction of the equivalence always
holds.

Proposition 6.5.4. In any integral domain every prime element is irreducible.

Proof. Look at the proof for Z and see that it works with little alteration.

In general rings, irreducible elements are not necessarily prime.

Example 6.5.5. Here is a domain in which an irreducible element may not be
prime. Consider Z[

√
−5]. One can check that 2,3, 1 +

√
−5 and 1 −

√
−5 are

all irreducible. One can also verify that the only units in Z[
√
−5] are ±1, so no
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two of these irreducibles are associates. Here are two distinct factorizations into
irreducibles that are equal(

1 +
√
−5
)(

1−
√
−5
)

= 6 = 2 · 3

The key element in establishing unique factorization is thus to show that when
an element of R[x] is irreducible it is also prime. To get started we will use a coarse
factorization for elements of K[x].

Definition 6.5.6. Let f(x) ∈ K[x] have positive degree and write its coefficients
in lowest terms

f(x) = un
an
bn
xn + un−1

an−1
bn−1

xn−1 + · · ·+ u1
a1
b1
x+ u0

a0
b0

Here each ui is a unit, ai and bi are products of elements of Irr and have no common
irreducible factor. Let A = gcd(a1, a2, . . . , an) and let B = lcm(b1, b2, . . . , bn). We
define the unit part of f(x) to be uf = un, the content of f(x) to be cf = A/B,
and the primitive part of f(x) to be f∗(x) = u−1f (B/A)f(x). Clearly, we have
f(x) = ufcff

∗(x).
We say f(x) ∈ K[x] is primitive when it has positive degree, and uf = cf = 1.

In particular the leading coefficient of f is a product of elements of Irr.

Since the gcd and lcm of a polynomial are uniquely defined—because Irr has a
unique representative for each associate class of irreducibles—the factorization of
f(x) ∈ K[x] into the product of its unit part, its content and its primitive part is
unique. Note also that a primitive polynomial is actually in R[x] since the lcm of
the denominators is 1.

Proposition 6.5.7. Let f(x) have positive degree, with content cf and primitive
part f∗(x). Then f∗(x) is a primitive polynomial. That is,

(1) f∗ ∈ R[x],

(2) cf = 1, and

(3) uf = 1.

Proof. (1) Let f(x) be written as follows with each ai
bi

in lowest terms and define
A and B.

f(x) = un
an
bn
xn + un−1

an−1
bn−1

xn−1 + · · ·+ u1
a1
b1
x+ u0

a0
b0

A = gcd(a1, a2, . . . , an)

B = lcm(b1, b2, . . . , bn)
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Then

f∗(x) =
an
A

B

bn
xn + (u−1n un−1)

an−1
A

B

bn−1
xn−1 + · · ·+ (u−1n u1)

a1
A

B

b1
x+ (u−1n u0)

a0
A

B

b0

Each ai
A and each B

Bi
is an element of R by the choice of A and B, so f∗(x) ∈ R[x].

(2) We know that f∗(x) ∈ R[x]; we will show that the gcd of the coefficients
of f∗(x) is 1 by showing that for any p ∈ Irr, p does not divide at least one of the
coefficients of f∗(x).

Let p ∈ Irr be such that p|B, and let pe be the largest power of p that divides
B. Then, for some i, pe divides bi, but pe+1 does not divide bi. We thus have
p - (B/bi). Since the coefficients of f(x) were in lowest terms, we also have p - ai.
Thus p - (aiB/bi). This shows that no irreducible that divides B divides all of the
aiB/bi. Consequently, the only irreducibles that divide all of the aiB/bi actually
divide all of the ai and therefore we have

gcd(a0B/b0, . . . , anB/bn) = gcd(a0, . . . , an) = A

gcd(a0B/Ab0, . . . , anB/Abn) = gcd(a0/A, . . . , an/A) = 1

(3) The leading term of f∗ is a product of irreducibles, since A, an, B, bn are.
So uf = 1.

Exercises 6.5.8. For each of the following polynomials, simplify the coefficients,
determine the content, the unit part and the primitive part. You should notice a
profound similarity between the two examples.

(a) Let f(x) = −4x3 + 8
15x

2 + 6
9x+ 16

20 in Q[x].

(b) Let f(x) = 2y2x3 + y3

y2+3x+2
x2 + y2+y

y2+2y+1
x+ y4

y3+2y2
in Q(x)[y].

Lemma 6.5.9. The product of two primitive polynomials is primitive. More gen-
erally, let f(x), g(x) ∈ K[x] both have positive degree. Then ufg = ufug, cfg = cfcg
and

(
f(x)g(x)

)∗
= f∗(x)g∗(x).

Proof. Suppose that f(x) and g(x) are both in R[x] and that they are both prim-
itive. We will show that for any p ∈ Irr there is a coefficient of f(x)g(x) that is
not divisible by p. Since p is arbitrary the gcd of the coefficients of f(x)g(x) is 1.

Since f(x) is primitive, we know that p does not divide all coefficients of f(x).
Let i be the smallest integer such that fi is not divisible by p. Similarly, let j be
the smallest integer such that gj is not divisible by p. Then the (i+j)th coefficient
of f(x)g(x) is

f0gi+j + f1gi+j−1 + · · ·+ figj + · · ·+ fi+jg0
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We see that p divides every term except for one; it does not divide figj . Thus p
does not divide the (i+ j)th term of f(x)g(x). This was what we needed to show.

Now let f(x), g(x) ∈ K[x] be arbitrary and h(x) = f(x)g(x). Then h(x) =
ufcff

∗(x)ugcgg
∗(x) =

(
ufug

)(
cfcg

)(
f∗(x)g∗(x)

)
. The first term is a unit in R,

the second term is in K and is a product of irreducibles (or their inverses). The
last term is a primitive polynomial in R(x). By the uniqueness of the factorization
into unit part, content, and primitive part we are done.

Corollary 6.5.10. Let m(x) ∈ R[x] have positive degree. Then

(1) If m(x) is irreducible then cm = 1.

(2) Let m(x) be primitive. Then m(x) is irreducible in R[x] if and only if it is
irreducible in K[x].

(3) If m(x) is irreducible in R[x] then it is prime in R[x].

Proof. In the factorization m(x) = umcmm
∗(x), we have cm is a product of irre-

ducbiles in R and m∗(x) is primitive and therefore in R[x]. If cm were not 1, then
m(x) would be reducible.

Let m(x) ∈ R[x] be primitive with degree n > 0. Any factorization of m(x) in
R[x] would involve polynomials of degree less than n and would therefore extend
to a factorization in K[x]. Thus if m(x) is reducible in R[x] then it is also reducible
in K[x].

Conversely, suppose that m(x) is reducible in K[x] with m(x) = f(x)g(x) and
both f(x) and g(x) having positive degree. Then, cmm

∗(x) = cfcgf
∗(x)g∗(x).

Bust since m(x) is primitive, cfcg = cm = 1. In addition, m(x) = m∗(x) =
f∗(x)g∗(x). This shows that m(x) is reducible in R[x].

Finally, suppose m(x) is irreducible in R[x] and suppose m(x) divides f(x)g(x)
with both factors in R[x]. Consider that m(x) also divides f(x)g(x) in K[x]. From
the previous item, m(x) is irreducible in K[x] so, it is prime in K[x], so it must
divide one of f(x) or g(x). Suppose f(x) = m(x)h(x) is a factorization in K[x].
We have f∗(x) = m∗(x)h∗(x). This factorization is in R[x]. Since f(x) = cff

∗(x)
with cf ∈ R, and m(x) = m∗(x), we have m(x) divides f∗(x) and therefore m(x)
divides f(x). Thus we have m(x) divides one factor of the product f(x)g(x) within
R[x]. This shows m(x) is prime.

Theorem 6.5.11. If R is a unique factorization domain, so is R[x].

Proof. Existence: The proof is similar to that for k[x]. We use induction on the
degree, starting with the factorization into irreducibles in R, which gives a base
step in degree 0. Assume we have factorization into irreducibles for polynomials
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of degree less than n. Let f(x) ∈ R[x] have degree n and let its content be cf
and primitive part f∗(x). Since f(x) ∈ R, so is cf and it has a factorization into
irreducibles. If f∗ is irreducible itself we are done. If it can be factored then, since
f(x) is primitive, each factor must have degree less than n. Each of the factors
can be written as a product of irreducibles by the induction hypothesis; so f∗(x)
can also be written as the product of irreducibles.

Uniqueness: The proof is entirely analogous to that in the integers or k[x]. It
follows from the fact that all irreducibles in R[x] are prime as shown in Corol-
lary 6.5.10.

Corollary 6.5.12. Let k be a field. The polynomial ring in n variables k[x1, . . . , xn]
is a unique factorization domain.

Proof. Induction on n.

Exercises 6.5.13. Discussion items

(a) Prove that every prime is irreducible in an integral domain.

(b) Explain why the “lowest terms” expression of an element of K is unique.

The following problem shows another useful aspect of considering a polyno-

mial ring k[x1, . . . , xn] as
(
k[x1, . . . , xn−1]

)
[xn]. As a first step, consider k[x, y]

as
(
k[x]

)
[y]. That is, we consider an element f of this ring as a polynomial in y

with coefficients from k[x]. In this context, the leading term of f is the one with
highest degree in y and the leading coefficient is an element of k[x]. That leading
coefficient itself has a highest degree term in x. Now, consider k[x, y] as a bivariate
polynomial ring, so an element f is treated as a finite sum of terms of the form
fa,bx

ayb with fa,b ∈ k. Up to this point there was no way to choose a leading term
for f . Now we have one: we take the terms of highest degree in y, and among
those we choose the term that has highest degree in x.

Exercises 6.5.14. A total ordering of monomials

(a) Following the discussion above, find the leading term of f = 2x3y+ 4x2y2 +
3xy3 + x2y2 + 5x4y3 + 7x6y2.

(b) What would the leading term of f be if we considered k[x, y] first as
(
k[y]

)
[x]?

(c) In either case (f as a polynomial in y with coefficients in k[x] or as a poly-
nomial in k with coefficients in k[y]), show that LT(fg) = LT(f) ∗ LT(g),
where LT indicates leading term.

(d) Assuming that the leading term is determined as in (b), finish this extension
of the Quotient-Remainder Theorem to k[x, y]: Given a and b in k[x, y] with
b 6= 0, there exist unique q and r satisfying the following two properties....
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(e) Prove this extension.

(f) Explain how the QR theorem above s is useful for computing in the quotient
ring k[x, y]/〈b〉.

(g) Give a recursive definition of the leading term of an element f in k[x1, . . . , xn].

Representatives for the irreducibles in R[x]

We can define a set of representatives for irreducibles in R[x] by building on top of
IrrR, the set of representatives for the irreducibles in R. Let m(x) be irreducible
in R[x] of degree n > 1. We will choose a representative for the set of irreducibles
that are associates of m(x). We have m(x) = umcmm

∗(x). If cm 6= 1 then m(x)
would not be irreducible. So, cm = 1.

Factor mn, the leading coefficient of m(x), as mn = u
∏
p∈Irr p

e
p (with each

ep nonnegative, and only a finite number nonzero, and u a unit in R). We are
allowing the possibility that the product is empty, in which case mn is a unit. We
take u−1m(x) as the representative for the associates of m(x). In other words we
require the leading term of an element of IrrR[x] to be a product of elements of
IrrR, disallowing multiplication by a unit in R.
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6.6 Irreducible Polynomials

Throughout this section we assume that R is a unique factorization domain and
K is its field of quotients. How can we determine if a primitive polynomial m(x) ∈
R[x] is irreducible? In this section, we introduce three tests for irreducibility, each
is a straightforward generalization of tests (that you may have seen at some point)
for irreducibility in Q[x].

Before proceeding we have the following observation.

Proposition 6.6.1. Let ϕ : R[x] −→ R[x] be a ring isomorphism. Then m(x) ∈
R[x] is irreducible if and only if ϕ

(
m(x)

)
is irreducible.

It can be helpful to make such a transformation to apply one of the tests below
(see 6.6.14).

Leading coefficient and constant term

Proposition 6.6.2. Let m(x) = mnx
n+mn−1x

n−1+· · ·+m1x+m0 be a primitive
polynomial of degree n in R[x]. Let r, s be coprime elements of R. Then r/s is a
root of m(x), as an element of K[x], if and only if sx − r is a factor of m(x) as
an element of R[x]. This can occur only if s|mn and r|m0.

Consequently, the search for roots of m(x) (or for linear factors of m(x)) is
narrowed to considering r/s (or factors of the form sx − r) for s a factor of mn

and r a factor of m0.

Proof. Clearly if sx− r is a factor of m(x) in R[x] then it is also a factor of m(x)
in K[x] and consequently r/s is a root of m(x).

Suppose that r/s is a root of m(x) considered in K[x]. Then by the Roots-
Factors theorem, x − r/s is a factor of m(x) so m(x) = (x − r/s)g(x) for some
g(x) ∈ K[x]. Since m(x) is primitive and the content of x − r/s is 1/s (or some
associate of it), the content of g(x) must be s (or the appropriate associate).
Furthermore m(x) = (sx − r)(g(x)/s) is a factorization of m(x) in R[x]. Since
the leading term of m(x) is the product of the leading terms of the two factors,
s|mn. Similarly, the constant term is the product of the constant terms of the two
factors, so r|m0.

This narrows the search for a linear factor of a primitive polynomial m(x), but
it doesn’t help determine higher degree factors. For m(x) of degree 2 or 3, m(x)
is irreducible if and only if it has no linear factor. For m(x) of degree n, m(x) is
irreducible if it has no factor of degree bn/2c or less. The following more general
result can help with higher degree.
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Proposition 6.6.3. Let m(x) = mnx
n+mn−1x

n−1+· · ·+m1x+m0 be a primitive
polynomial of degree n in R[x]. Suppose m(x) has a factorization in R[x] as m(x) =
a(x)b(x). Then

(1) a(x) and b(x) are primitive with degrees adding to n;

(2) the product of the leading terms of a(x) and b(x) is mn;

(3) the product of the constant terms of a(x) and b(x) is m0.

We know that Z is a UFD and that Q[x] is a UFD. Theorem 6.5.11 established
that Z[x] is a UFD. It may be counterintuitive, but to prove that an m(x) ∈ Q[x]
is irreducible, it is useful to consider its primitive part m∗(x) ∈ Z[x]. Using the
previous proposition is one way. The next exercises are examples. We will treat
two other methods in the next subsections.

Exercises 6.6.4. Show that each of the following is irreducible.

(a) 3x3 + 5x+ 10. [How can we quickly tell that any root must be an integer?]

(b) xy3 + (x2 + 2)y + x2 + x. [How can we quickly tell that any root must be a
polynomial in x?]

Exercises 6.6.5.

(a) For what integer values of u does y3 + uy + 2 factor in Q[y]?

(b) For what values of u(x) ∈ Q[x] does y3 + u(x)y + x factor in Q[x, y]?

Exercises 6.6.6.

(a) For what integer values of u does f(y) = y4+uy2+4 factor in Q[x]? Consider
separately the case when f(y) has a root, and when it factors as a product
of irreducible quadratics.

(b) For what values of u(x) ∈ Q[x] does y4 + u(x)y2 + x2 factor in Q[x, y]?
Consider separately the case when f(y) has a root in Q[x] and when it
factors as a product of irreducible quadratics.

Exercises 6.6.7. Show that x4−10x+1 is irreducible over the rationals as follows.

(a) Show it has no roots.

(b) Try to factor it as a product of quadratics and derive a contradiction.

Exercises 6.6.8. Use the general theorem above to show that one of the polynomials
over Z below is irreducible and to factor the other.

(a)

(b)

Exercises 6.6.9. Consider the polynomials below over F2[x]. Use Proposition 6.6.2
to factor one of the polynomials and to show that the other is irreducible.
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(a)

(b)

Reducing modulo a prime ideal

Given a ring R and ideal J in R, there is a natural homomorphism from R[x] to
R/J [x] that simply reduces each coefficent of a polynomial modulo J : the image
of a(x) =

∑
aix

i is a(x) =
∑
aix

i where ai is ai + J , the congruence class of ai in
R/J .

Proposition 6.6.10. Let m(x) ∈ R be a primitive polynomial of degree n > 1.
Suppose that J is an ideal J in R such that mn 6∈ J . Let m(x) be the element of
R/J [x] obtained by reducing the coefficients of m modulo J . If m(x) is irreducible
then so is m(x).

Proof. We will show the logically equivalent statement: if m(x) is reducible then
so is m(x). Suppose m(x) is reducible and m(x) = a(x)b(x) is a factorization in
R[x] with deg(a(x)) and deg(b(x)) both greater than 1. Note that the leading
coefficient of m(x) is the product of the leading coefficients of a(x) and b(x). Since
mn is not in J , the leading coefficients of a(x) and b(x) are not in J . Thus
deg(a(x)) = deg(a(x)) and similarly deg(b(x)) = deg(b(x)).

Reducing each coefficient modulo J we have in R/J [x], m(x) = a(x)b(x). Since
the leading coefficients of a(x) and b(x) are non zero, we have a nontrivial factor-
ization of m(x), as was to be proved.

Exercises 6.6.11. Test whether the following polynomials are irreducible over the
rationals.

(a) 3x2 − 7x− 5

(b) 2x3 − x− 6

(c) x3 − 9x− 9

Exercises 6.6.12.

(a) Show that y4 + 7y3 + 2y2 + 1 is irreducible in Q[y].

(b) Show that y4 + (x3 + 7)y3 + x2y2 + x2 + 2x+ 3 is irreducible in Q[x, y].

Eisenstein’s criterion

Proposition 6.6.13 (Eisenstein). Let m(x) ∈ R[x] be a primitive polynomial of
degree n > 1. Suppose that there is a prime ideal P in R such that

(1) mn 6∈ P .
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(2) mi ∈ P for i = 0, . . . , n− 1

(3) m0 6∈ P 2

Then m(x) is irreducible.

Proof. We assume m(x) satisfies the properties above and that it factors as m(x) =
a(x)b(x). We show that one of the factors is an invertible element of R (in par-
ticular, of degree 0). Since this is true for an arbitrary factorization, m(x) is
irreducible.

Since the leading coefficient of m is not in P , the leading coefficients of a(x)
and b(x) are also not in P . The constant term of m is in P but not P 2. Since
m0 = a0b0 and P is prime, exactly one of a0 and b0 is in P and the other is not.
Let us assume a0 ∈ P and b0 6∈ P . Let t be minimal such that at 6∈ P (we know
the leading coefficient of a(x) is not in P , so there exists such a t). Then we have

mt = a0bt + a1bt−1 + · · ·+ at−1b1 + atb0

Each term aibt−i is in P except the last, which is not, so mt 6∈ P . By our assump-
tions on m(x), the only coefficient not in P is mn. Thus t = n, a(x) has degree n
and b(x) has degree 0. Since m(x) is primitive, b(x) must be a unit.

Exercises 6.6.14. Use Eisenstein’s criterion to show that the following are irre-
ducible polynomials

(a) Let p be a prime. Show that xp−1 + xp−2 + · · ·+ x+ 1 is irreducible in Q[x].
[Write it as (xp − 1)/(x− 1) and substitute x = y + 1.]

(b) In k[x, y], for any field k, y2 + x2 − 1 is irreducible.

(c) In k[x, y], for any field k, yn − x3 − x2 is irreducible.

Exercises 6.6.15. Show these are irreducible over any field.

(a) xy2 − z
(b) xy2 − z2

(c) x2 + y2 + z2 − 1 (this took me two steps)

(d) −4x3z + 3x2y2 − 4y3 + 6xyz − z2, the tangent surface to the twisted cubic.
(I couldn’t do this.)

Exercises 6.6.16.

(a) Let p be prime. It is clear that (xp− 1) is not irreducible since it has a root,
1. Show that xp−1

x−1 = xp−1 + xp−2 + · · · + 1 is irreducible over Q. Use the
isomorphism x 7−→ (x+ 1) and Eisenstein’s criterion.
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