
Lecture Notes for Math 696

Coding Theory

Iterative Decoding

Michael E. O’Sullivan

mosulliv@math.sdsu.edu

wwww-rohan.sdsu.edu/ ˜ mosulliv

April 13, 2004

These notes are my effort to understand several articles concerning decoding of low-
density parity-check codes. The paper by Aji and McEliece called “The Generalized
Distributive Law” [6] gives a clear description of an algorithm that is useful in many
areas of applied mathematics including error correction: They cite artificial intelligence,
belief propagation algorithms, fast Fourier transforms and several decoding algorithms.
The GDL yields a computationally efficient algorithm for computing certain complicated
formulas. The algorithm is best understood by looking at a graph that expresses the
relationship between the variables and the functions that occur in the formula. The
algorithm involves “message passing” between the vertices of the graph. I will actually
use the graphical representation from a different article, “Factor Graphs and the Sum-
Product Algorithm” by Kschischang, Frey and Loeliger. The algorithm is only exact
when the underlying graph is a tree, but numerous experiments using these message
passing algorithms for decoding have been done, and the performance for non-trees is
remarkably good.

Theoretical understanding of the algorithm has improved greatly in the last three
years, but my impression is that a definitive explanation of the performance is still
lacking.

1 Probability Theory: The basics

Definition 1.1. Let X be a finite set. A probability distribution on X is a map P : X →
[0, 1] such that

∑

x∈X P (x) = 1. We say the distribution is uniform if P (x) = P (x′) for
all x, x′ ∈ X. We allow for the possibility that P (x) = 0 for some x ∈ X. We say that
x ∈ X is possible if P (x) > 0.

For any subset A of X we will write P (A) for
∑

x∈A P (x).

There are several ways in which we will abuse notation for the sake of simplicity. For
example, in the definition we defined P to be a function whose domain is X, yet we also
treat it as a function on the power set 2X . We will be mainly interested in distributions
on a Cartesian product and in that context we use the symbol P in several ways.

1

Let P be a distribution on a Cartesian product X × Y . We say that P is a joint

distribution on X and Y . We will also use P for distributions induced on X and on Y
as follows. Define

P (x) = P ({x} × Y) =
∑

y∈Y

P (x, y) (1)

It is clear that
∑

x∈X P (x) = 1, so P gives a distribution on X. Similarly, one defines a
distribution on Y .

Example 1.2. A deck of cards is physical model of R × S with the set of ranks R =
{A, 2, 3, 4, . . . , 10, J,Q,K} and suits S = {♥,♦,♠,♣}. The uniform distribution on the
deck, where each card has probability 1/52 models the likelihood of drawing a particular
card.

P (A,♥) = 1/52

P (A) = 1/4

P (♥) = 1/13

Example 1.3. Consider a stacked deck of cards, with an extra royal flush {10, J,Q,K,A}
of spades and three extra royal flushes of hearts. That’s 20 extra cards. The likelihood
of drawing a particular card from the stacked deck is modeled by the distribution on
R× S given by

P (r, s) =

1/72 if r = 2, 3, . . . , 9

1/72 if s = ♦,♣
1/36 if s = ♠ and r = 10, J,Q,K,A

1/18 if s = ♥ and r = 10, J,Q,K,A

We have

P (r) =

{

1/18 if r = 2, 3, . . . , 9

1/9 if r = 10, J,Q,K,A

P (s) =

13/72 if s = ♣,♦
1/4 if s = ♠
7/18 if s = ♥

Definition 1.4. Given the distribution P on X × Y we can define a distribution on Y
for each possible x ∈ X by

Px(y) =
P (x, y)

P (x)
(2)

The distribution Px is called the conditional distribution on Y given x. The notation is
read “the probability of y given x.” It is commonly written P (y|x). Similarly one has
Py(x) a.k.a. P (x|y).

2

It is clear that Px is a distribution since
∑

y∈Y P (x, y) = P (x).

Example 1.5. For the normal deck of cards, Pr(s) = 1/4 and Ps(r) = 1/13 for all r, s.

Example 1.6. For the stacked deck, the probability of different suits given the rank K
is

PK(s) =

1/8 if s = ♦,♣
1/4 if s = ♠
1/2 if s = ♥

and the probability of different ranks given the suit ♠ is

P♠(r) =

{

1/18 if r = 2, 3, . . . , 9

1/9 if r = 10, J,Q,K,A

Given a distribution P on X × Y we have defined a unique distribution on X, a
unique distribution on Y , unique conditional distributions Px on Y for each x ∈ X, and
unique conditional distributions Py on X for each y ∈ Y . Is this reversible in any way?
Given a distribution on X and a distribution on Y is there a unique distribution on
X × Y ? The answer is no, as the next example shows.

Example 1.7. Take two decks and remove all the red royals {10, . . . , A} and all the
black non-royals. The collection of cards that remains has

P (r, s) =

1/26 if r = 2, 3, . . . , 9 and s = ♥,♦
1/26 if r = 10, J,Q,K,A and s = ♠,♣
0 otherwise

Yet P (r) = 1/13 for all r and P (s) = 1/4 for all s, which is also true for the standard
deck.

On the other hand, given a distribution P on X and a set of conditionals Px for each
possible x ∈ X, there is a unique distribution Q on X × Y given by

Q(x, y) = P (x)Px(y)

such that the distribution induced on X by (1) is P and the conditionals induced on Y
by (2) are Px. Of course the distribution Q on X × Y also determines a distribution on
Y and conditional distributions on X for each y ∈ Y . Now that we have established this
point we will use the same letter P for the distribution on X × Y determined by P on
X and the Px on Y .

Bayes’ theorem

Bayes’ theorem, a fundamental result in probability theory, tells how to compute Py(x).

3

Theorem 1.8. Let P be a distribution on X ×Y and let Px be conditional distributions

on Y for each possible x. For each possible y ∈ Y the conditional distribution on X is

given by

Py(x) =
P (x)Px(y)

∑

x′ P (x′)Px′(y)
(3)

The sum is over all possible x′ ∈ X.

Proof: For x and y both of nonzero probability, we have from (2),

Py(x) =
P (x, y)

P (y)

=
P (x, y)

∑

x′∈X P (x′, y)

=
P (x)Px(y)

∑

x′ P (x′)Px′(y)

Of course the latter sum is only over the possible x′.

The proof is so simple it hardly seems that this result should be called a theorem.
The reason for the prestige is more practical than theoretical.

Example 1.9. Suppose you have two urns, H and T . Urn H has 5 red balls and 3
black, while urn T has 4 red balls and 5 black. Someone flips a coin and then draws
from urn H or urn T , depending on whether heads or tails shows. Suppose that at the
end of the process someone shows you a black ball, what is the probability that the coin
showed H?

Here is our probabilistic model of this situation. We have a uniform distribution on
X = {H,T} and for each element of X we have a distribution on Y = {red,black}. This
gives the joint distribution on X × Y

P (H, red) = 5/16 P (H,black) = 3/16

P (T, red) = 2/9 P (T,black) = 5/18

The question asks for Pblack(H). To compute this we first compute the denominator in
(3), P (black) = 13/16 + 5/18 = 67/144. Then

Pblack(H) = P (H,black)/P (black)

=
3/16

67/1440

= 27/67

The decoding problem, at its most basic level, is essentially an application of Bayes’
theorem. Let’s suppose we are using a binary [n, k, d] code over

�
2. Let X be the code

(2k elements) and let Y be
� n

2 . We posit some distribution on codewords (usually the
uniform distribution). We also posit conditional distributions, Px(y), the probability
that the vector y is received given that x is sent. When the vector y is received the goal

4

of decoding is to find the vector x that is most likely to have been sent. In other words
to find the vector x that maximizes Py(x). This is called maximum likelihood decoding.

Now refer to Bayes’ theorem. For fixed y, the denominator of Py(x) is the same for all
x, so for the purpose of maximizing we may ignore it. We need to do 2k multiplications
P (x)Px(y) and comparisons between these values. For k large (say 100-1000), this is
computational impossible, so we must find other means. Assuming that all codewords
are equally likely eliminates the necessity of doing the multiplications, as the following
proposition shows. But we still have comparisons of 2k values.

Proposition 1.10. Let P be a distribution on X × Y . Suppose that X has the uniform

distribution, that is P (x) is independent of x. For a fixed y ∈ Y the x that maximizes

Py(x) is the same x that maximizes Px(y).

Proof: For a fixed y the denominator in (3) is constant. If P (x) is also constant as x
varies, then Py(x) is proportional to Px(y).

2 Decoding

In this section we’ll look at maximum likelihood decoding in four different situations,
from very simple to fairly complex, The first two concern decoding to a single bit, the
latter two look at the general problem of decoding a linear code.

The binary symmetric (hard-decision) channel

Let us start with the simplest nontrivial channel, the binary symmetric channel. A
source sends a 0 or a 1 to a target. The probability of corruption of the bit, α, is the
same for both 0 and 1. We presume that α < 1/2.

We want to decide on a decoding strategy for the target. At first glance the question
seems silly; if the target receives a 1 it should decode to 1 and if it receives a 0 to 0. But
this decoding strategy presumes that 0 and 1 are sent with equal probability. Suppose
on the contrary that the source probabilities are % for 1 and 1−% for 0 and that % < 1/2.
Suppose also that the target knows the value of % and of α. Would it ever make sense
for the target to decode a 1 to a 0?

Consider the table of joint probabilities.
If the target receives a 1 it is more likely that a 1 was sent provided %(1−α) > (1−%)α.

This is equivalent to %/(1 − %) > α/(1 − α). Since the function x/(1 − x) is strictly
increasing, this is equivalent to % > α. On the other hand, if % < α it makes sense to
decode a 1 to a 0.

5

Bit received
0 1

Bit Sent
0 (1− %)(1 − α) (1− %)α
1 α% %(1− α)

In error correction coding it is usually assumed that 0 and 1 are equiprobable at the
source. We will adopt this assumption from now on.

The binary soft decision channel

In practice a bit is represented electronically in some fashion, and the target receives
some corrupted version of the signal. The hard-decision channel interprets the received
signal as a 0 or 1, while a soft-decision channel allows for a spectrum of values. Let us
take a relatively simple model where a bit is represented as a voltage, 2V for 0 and −2V
for 1. Let us also suppose that the target measures the received signal as an integral
value between −3V and 3V . Based on the electronics or experiments, the designer has
a probabilistic model for pb(a) the probability that b ∈ {0, 1} is sent (as ±2V) and
a ∈ {−3,−2,−1, 0, 1, 2, 3} is received. If we presume that 0 and 1 are equally likely to
have been sent, p(0) = p(1), then to decode a received value of a is to compare

pa(0) =
p(0)p0(a)

p(0)p0(a) + p(1)p1(a)
and pa(1) =

p(1)p1(a)

p(0)p0(a) + p(1)p1(a)

to see which is the largest. Since the denominators are the same and p(0) = p(1) this is
equivalent to finding the larger of p0(a) and p1(a). We call this a soft decision channel

because the electronics has the capability of measuring a variety of values each associated
with a different likelihood that 0 or 1 was sent. This contrasts with The channel in the
previous subsection where a definitive decision—also called a hard decision—is made by
the electronics as to whether 0 or 1 was sent.

In general the “alphabet” of possible received values, A, could be quite large. For
example, we could assume that the error is due to a Gaussian distribution with variance
σ: The received alphabet is A =

�
and a probability density function is used. The

probability that a ∈ �
is received when 0—represented by −2V —is sent is

∫ a

−∞ p0(a) da
where

p0(a) =
1√

2πσ2
e−

(a−2)2

2σ2

The probability that a ∈ �
is received when 1—represented by 2V —is sent is

∫ a

−∞ p0(a) da
where

p1(a) =
1√

2πσ2
e−

(a+2)2

2σ2

Hard decision decoding

Consider now the situation with error-correction coding. Let C ⊆ � n
2 be a linear code.

We assume that for any component i ∈ {1, . . . , n} some codeword is nonzero in that

6

component. This is reasonable, for it would make no sense to have all codewords be 0 in
a particular position. Under this assumption it is easy to show that, for any component,
exactly half of the codewords are nonzero in that component (see exercise). We assume
that the source produces code vectors with equal probability; P (c) = P (c′) for all c, c′ ∈
C.

We also assume that the corruption of any given bit happens independently of the
corruption of the others. This may not be realistic, but it makes analysis much easier.
More formally, we assume a memoryless binary symmetric channel with crossover proba-

bility α < 1/2: the probability of a bit being received erroneously is given by the binary
symmetric channel,

pb(a) =

{

1− α if a = b

α else

and the probability of receiving w ∈ � n
2 when c ∈ � n

2 is sent depends only on the
individual components

Pc(w) =

n
∏

i=1

pci
(wi) (4)

Therefore the probability depends only on t = wt(w − c),

Pc(w) = αt(1− α)n−t (5)

It is an exercise to check that Pc is indeed a distribution on
� n

2 .
The decoding problem is: Given that the target receives w, find the c maximizing

Pw(c). Since we assumed codewords are equally likely, Proposition 1.10 shows that this
is equivalent to finding the c that maximizes Pc(w). Since α < 1/2, Pc(w) is maximal
for t as small as possible. Thus decoding reduces to finding the closest codeword c to
the received vector w, using the Hamming distance.

Proposition 2.1. Using the memoryless binary symmetric channel, and assuming all

codewords are equally likely, maximum likelihood decoding is equivalent to minimum dis-

tance decoding.

Soft decision decoding of a linear code

We now integrate the soft decision channel for each bit with a linear code. Let C ⊆ � n
2 .

We assume a uniform distribution on C. We also assume, as in the previous section, that
the channel is memoryless— the corruption of any given bit occurs independently of the
corruption of the others—but this time the target electronics allow for measurement of
each corrupted bit as one of a range of values. Let A be the set of possible measurements.
Formally, we assume a memoryless soft decision channel: the conditional probabilities
p0(a) and p1(a), for each a ∈ A, are independent of the component i for 1 ≤ i ≤ n, and
the probability that the vector v is sent and w ∈ An is received is

pv(w) =

n
∏

i=1

pvi
(wi)

7

If the target receives w ∈ An the decoding goal is to find the c ∈ C that maximizes
Pw(c). Since w is fixed and the codewords are equally likely, Proposition 1.10 says this
is equivalent to maximizing

Pc(w) =

n
∏

i=1

pci
(wi)

Now focus on each factor. Recall that exactly half of the codewords are nonzero in each
component. Since the codewords are equally likely, p(ci) = 1/2 whether ci = 0 or 1. We
multiply the previous equality by the constant 2−n

∏n
i=1 1/p(wi). Or objective is then

to find c maximizing

1

2n
∏n

i=1 p(wi)
Pc(w) =

n
∏

i=1

pci
(wi)

(

p(ci)

p(wi)

)

=

n
∏

i=1

p(ci, wi)

p(wi)

=
n
∏

i=1

pwi
(ci)

At the end we have a fairly simple expression. It is also intuitively reasonable. For each
i, we have a probability distribution pwi

on
�

2 based on the fact that we received wi.
The previous formula says that we should compute

∏n
i=1 pwi

(ci) for each codeword c and
find the codeword maximizing that expression.

This computation is infeasible when k = dimC is large since there are 2k codewords.
In the next section we introduce the generalized distributive law and show how it can
dramatically simplify the computation. It only applies to a very small family of codes,
which are not strong error correctors. But the concept in the generalized distributive
law leads to an efficient algorithm which is broadly applicable and very effective.

Exercises 2.2.

1. Let V be a subspace of
� n

2 . Suppose that for some i with 1 ≤ i ≤ n, there exists a
vector v ∈ V with vi 6= 0. Show that exactly half of the vectors in V are 1 in the
ith coordinate.

Generalize to arbitrary finite fields.

2. For i ∈ {1, . . . , n}, let pi be a distribution on
�

2. Define a function on
� n

2 by P (w) =
∏n

i=1 pi(wi). Show that this is a distribution (even when the pi are distinct).

8

3 The Generalized Distributive Law and Efficient Soft De-

cision Decoding

The distributive law, ab + ac = a(b + c) can be interpreted in terms of computational
complexity. The left hand side requires 2 multiplications and 1 addition, while the right
hand side requires just 1 multiplication and 1 addition. The difference becomes more
dramatic with several terms:

r
∑

i=1

abi = a

r
∑

i=1

bi

involves r multiplications and r−1 additions versus 1 multiplication and r−1 additions,
and

r
∑

i=1

s
∑

j=1

t
∑

k=1

v
∑

l=1

aibjckdl =

(

r
∑

i=1

ai

)

s
∑

j=1

bj

(

t
∑

k=1

ck

)(

v
∑

l=1

dl

)

involves rstv multiplications and rstv− 1 additions versus 3 multiplications and r + s +
t + v − 4 additions.

You probably assumed that a, b, c were real numbers in the preceeding paragraph,
but the distributive law is assumed in a variety of algebraic objects. The more general
formulas above can be proved by induction from the basic ab + ac = a(b + c). The
minimal requirements we might impose are the following:

• R is a set with two operations + and ×,

• + and × are associative and commutative,

• 0 is the identity for + and 1 is the identity for ×, and

• × distributes over +.

Such an object is called a semiring since it lacks only the existence of an additive inverse
to be a ring. The paper of Aji and McEliece gives several examples, but we will just
consider three which are of interest in decoding. One is the real numbers with the
usual operations of addition and multiplication. Another is the nonnegative reals with
maximization (in the role of +) and multiplication. We have a distributive law

max(ab, ac) = amax(b, c)

In this context the formulas above become

r
max
i=1

abi = a
r

max
i=1

bi

involves r multiplications and r−1 comparisons versus additions versus 1 multiplication
and r − 1 comparisons, and

r
max
i=1

s
max
j=1

t
max
k=1

v
max
l=1

aibjckdl =

(

r
max
i=1

ai

)(

s
max
j=1

bj

)(

t
max
k=1

ck

)(

v
max
l=1

dl

)

9

involves rstv multiplications and rstv − 1 comparisons versus 3 multiplications and r +
s + t + v − 4 comparisons.

The final example is the set of reals with minimization (in the role of +) and addition
(in the role of ∗).

min(a + b, a + c) = a + min(b + c)

Here is an application of the GDL.

Proposition 3.1. For i = 1, . . . , n, let pi be distributions on
�

=
�

2. For a ∈ �
, let

ν(a) =
∑

v∈
� n
2

wt(v)=a mod 2

n
∏

j=1

pj(vj)

Then ν(0) + ν(1) = 1, and ν(0)− ν(1) =
∏n

i=1(pi(0)− pi(1)).

Proof:

ν(0) + ν(1) =
∑

v∈
� n

wt(v)=0 mod 2

n
∏

j=1

pj(vj) +
∑

v∈
� n

wt(v)=1 mod 2

n
∏

j=1

pj(vj)

=
∑

v∈
�

n

n
∏

j=1

pj(vj)

Using the GDL

=

n
∏

j=1

(pj(0) + pj(1))

= 1

On the other hand,

ν(0) + ν(1) =
∑

v∈
� n

wt(v)=0 mod 2

n
∏

j=1

pj(vj) −
∑

v∈
� n

wt(v)=1 mod 2

n
∏

j=1

pj(vj)

=
∑

v∈
�

n

n
∏

j=1

((−1)vj pj(vj))

Using the GDL

=
n
∏

j=1

(pj(0) − pj(1))

Here is the general formulation of the GDL.

10

Theorem 3.2. Let I be a finite set. For each i ∈ I let Di be a finite set and Fi a

function with domain Di taking values in a semiring R. Let
∏

i∈I Di be the Cartesian

product of the sets Di. Then

∑

v∈
�

i∈I Di

(

∏

i∈I

Fi(vi)

)

=
∏

i∈I

∑

x∈Di

Fi(x)

Proof: Induction on the number of elements in I.

An example of efficient soft decision decoding

Here is an example from Wiburg’s thesis [5]. Let
�

2 be the field of two elements and
consider the code C with check matrix

H =

1 0 0
1 0 0
0 1 0
1 1 1
0 1 0
0 0 1
0 0 1

(6)

We want an efficient algorithm for maximum likelihood decoding of C. We will index the
rows of H with V = {1, 2, 3, 4, 5, 6, 7} and the columns with Λ = {A,B,C}. Consider
the graph G whose vertex set is V ∪ Λ and whose edge set is E = {(i, α) : Hi,α 6= 0}.
The graph is called bipartite because edges can exist between a vertex in V and a vertex
in Λ but not between two vertices in V or two vertices in Λ.

In the section on soft decision decoding we reduced the problem of maximum likeli-
hood decoding to the maximization of Q(c) for c ∈ C where

Q(c) =
n
∏

i=1

pi(ci)

Here pi is a probability distribution on {0, 1} that is based on the target having received
some particular signal wi for the ith bit. (We won’t write wi since it is relevant only to
determine the probabilities pwi

.) Let us assume the codeword maximizing Q(c) is unique
and let us call it c̄. For each k ∈ V let

qk(0) = max
c∈C
ck=0

Q(c) (7)

qk(1) = max
c∈C
ck=1

Q(c) (8)

Then

max
c∈C

Q(c) = max
ck∈{0,1}

(max
c∈C
ck=0

Q(c),max
c∈C
ck=1

Q(c)) (9)

= max
ck∈{0,1}

qk(ck) (10)

(11)

11

2

4

A

6

1

C B

3

57

Figure 1: The bipartite graph for the check matrix (6)

We can discover the value of c̄k from qk: if qk(0) > qk(1) then c̄k = 0 and vice versa. Thus
maximum likelihood decoding can be achieved by computing for each k the distributions
qk.

We will apply the generalized distributive law to compute the functions qk. First
we need to extend the function Q to all of

� 7 so that Q is a function of 7 independent
variables. Let

χ(a, b, c) =

{

1 a + b + c = 0

0 otherwise

For any vector v ∈ � 7 which is not in C, either χ(v1, v2, v4), χ(v3, v4, v5), or χ(v4, v6, v7)
is 0. On the other hand if v ∈ C then each of these functions is 1. Thus for v ∈ � 7 we
define

Q(v) = p1(v1)p2(v2)p3(v3)p4(v4)p5(v5)p6(v6)p7(v7)χ(v1, v2, v4)χ(v3, v4, v5)χ(v4, v6, v7)

We now seek the v ∈ � 7 maximizing Q(v).
Let us compute q4 from (7) and thereby find c̄4. We apply the GDL and get for

a ∈ �
2,

q4(a) = p4(a)νA(v4)νB(v4)νC(v4)

12

where

νA(v4) = max
v1

max
v2

p(v1)p(v2)χ(v1, v2, v4)

νB(v4) = max
v3

max
v5

p(v3)p(v5)χ(v3, v4, v5)

νC(v4) = max
v6

max
v7

p(v6)p(v7)χ(v4, v6, v7)

Computing νA(0) and νA(1) requires 4 multiplications and 2 comparisons since

νA(0) = max(p1(0)p2(0), p1(1)p2(1))

νA(1) = max(p1(0)p2(1), p1(0)p2(1))

The same is true for νB and νC , so the three together cost 12 multiplications and 6
comparisons.

Now
q4(0) = p4(0)νA(0)νB(0)νC(0)

requires 3 multiplications as does q4(1), and finally we need to compare q4(0) and q4(1),
so this adds 6 multiplications and 1 comparison. Thus altogether 18 multiplications and
7 comparisons.

This compares favorably with computing Q(c) directly for all 16 codewords (6 multi-
plications each) and then comparing the results (15 comparisons). One might argue that
we have only computed c̄4 and that computing the other c̄k will multiply the complexity
by 7, but this is not the case, as we now show.

Let us compute q7. For a ∈ �
2,

q7(a) = p7(a)

(

max
v4,v6

µC(v4)p6(v6)χ(v4, v6, v7)

)

where

µC(v4) = p4(v4)νA(v4)νB(v4)

Since we have already computed νA and νB , computing µC requires 2 multiplications for
each value of v4, thus 4 multiplications. Computing the term in parenthesis is analogous
to the computation of νA so it requires 4 multiplications and 2 comparisons. Finally,
computing q7(0) and q7(1) and choosing the larger requires 2 multiplications and 1
comparison.

Computing c̄k for the other values of k is similar, but notice that µC is computed
once and used for both k = 6 and 7.

The best way to analyze this is to relate the computational burden for each of the
functions we introduced to the graph. For each edge, we have to compute a function like
νA. For each inner edge, we have to compute a function like µC . At each outer vertex
the final step in the computation of qk involves 2 multiplications and 1 comparison, while
at k = 4 we have 6 multiplications and 1 comparison. This is tabulated in the figure.

The results are not that impressive when compared with the brute force method.
One needs a larger graph to see gains in efficiency.

13

2

4

A

6

1

C B

3

57

Figure 2: The bipartite graph labeled with message functions

in out total

inner edge (4,2) (4,0) (24,6)

outer edge 0 (4,2) (24,12)

inner vertex (6,1) x (6,1)

outer vertices (2,1) x (12,6)

TOTAL (66,25)

Table 1: Computational complexity (multiplications, comparisons) as it relates to the
graph.

4 Belief Propagation Algorithms

Suppose we define a code as the null space of some n ×m binary matrix H. It will be
convenient to describe belief propagation algorithms using the bipartite graph of H. The
bipartite graph of H has n + m vertices, one for each row and one for each column. Let
{r1, . . . , rn} be the row vertices and {c1, . . . , cm} the column vertices. There is an edge
(ri, cj) if and only if Hij is nonzero.

Given any bipartite graph G, after enumerating the two sets of vertices, there is a
unique binary matrix whose graph is G. We can construct a code as the left null-space
of this matrix. Different enumerations give different matrices, but they differ only by
permutation, so the resulting codes are equivalent.

We will describe the decoding algorithm in terms of a bipartite graph with vertex
sets V and Λ with the understanding that the code is defined as the left nullspace of a
#V ×#Λ check matrix corresponding to some enumeration of V and Λ.

14

Notation

We will write the binary field as
�

in this section.
Let V be a finite set of n elements. We will write the n dimensional vector space

with basis elements indexed by V as
� V . For any subset A of V we can project

� V onto
� A and embed

� A into
� V in the natural way. For v ∈ � V and A ⊆ V we will write vA

for the projection of v onto
� A. For a singleton {i} ⊆ V we simply write vi instead of

v{i}. We define χ to act on vectors in any space
� A for A ⊆ V by

χ(vA) =

{

1 if
∑

i∈A vi = 0

0 otherwise

Let V and Λ be the vertex sets of a bipartite graph, G. For each α ∈ Λ, there is an
associated subset of V , {i ∈ V : i adjα}. We will identify α with this subset, so that
we may project a v ∈ � V onto the space

� α and call the image vα. Thus we may also
think of Λ as a collection of subsets of V . The code C ⊆ � V defined by the graph is
{v ∈ � V : χ(vα) = 1 ∀α ∈ Λ}. In other words,

∏

α∈Λ χ(vα) is the indicator function for
C.

In the example of the previous section, V = {1, 2, 3, 4, 5, 6, 7} and Λ = {A,B,C}
where A = {1, 2, 4}, B = {3, 4, 5}, C = {4, 6, 7}. In the graph below, V = {1, 2, 3, 4, 5, 6, 7}
and Λ = {A,B,C} with A = {1, 4, 6, 7}, B = {2, 4, 5, 7} and C = {3, 4, 5, 6}. With the
expected enumeration of rows and columns, this gives the Hamming code with check
matrix

H =

1 0 0
0 1 0
0 0 1
1 1 1
0 1 1
1 0 1
1 1 0

(12)

1

23

4

5

6 7

A

BC

15

The local max-product algorithm

We return now to the decoding problem. For each i ∈ V we have distributions pi on
{0, 1}. We want to find the vector c̄ ∈ C maximizing

Q(c) =
∏

i∈V

pi(ci)

We extend Q to all of
� V by multiplying by the indicator function for C,

Q(v) =
∏

i∈V

pi(vi)
∏

α∈Λ

χ(vα)

Notice Q(v) = 0 for v 6∈ C.

Input For each vertex i ∈ V , the distribution pi on
� {i}.

Data Structures

For each edge (i, α), two functions on
� {i}: µiα and ναi.

For each i a function on
� {i}: qi.

Initialization For each edge (i, α) and for each a ∈ � {i}:

µiα(a) = pi(a)

Algorithm For r = 1 to R.

For each edge (i, α) and for each a ∈ � {i}:

ναi(a) = max
v∈

� α

vi=a

χ(v)
∏

j∈α
j 6=i

µjα(vj)

µiα(a) = pi(a)
∏

β3i
β 6=α

νβi(a)

For each i ∈ V and each a ∈ �
,

qi(a) = pi(a)
∏

β3i

νβi(a)

Output The hard decision based on qi: Vector w ∈ � V such that

wi =

{

1 if qi(1) > qi(0)

0 else

16

The local sum-product algorithm

The preceeding algorithm is designed to compute the most likely codeword, that is the
c ∈ C maximizing Q(c) =

∏n
i pi(ci). We could also have computed for each i the most

likely value for the ith bit. We do this by computing

qk(0) =
∑

c∈C
ck=0

Q(c) (13)

qk(1) =
∑

c∈C
ck=1

Q(c) (14)

(15)

and then comparing the two. The computational problem is exactly analogous to the
max product algorithm but with summation replacing maximization.

Input For each vertex i ∈ V , the distribution pi on
� {i}.

Data Structures

For each edge (i, α), two functions on
� {i}: µiα and ναi.

For each i a function on
� {i}: qi.

Initialization For each edge (i, α) and for each a ∈ � {i}:

µiα(a) = pi(a)

Algorithm For r = 1 to R.

For each edge (i, α) and for each a ∈ � {i}:

ναi(a) =
∑

v∈
� α

vi=a

χ(v)
∏

j∈α
j 6=i

µjα(vj)

µiα(a) = pi(a)
∏

β3i
β 6=α

νβi(a)

For each i ∈ V and each a ∈ �
,

qi(a) = pi(a)
∏

β3i

νβi(a)

Output The hard decision based on qi: Vector w ∈ � V such that

wi =

{

1 if qi(1) > qi(0)

0 else

17

5 Local Algorithms Applied to a Tree

Definition 5.1. Let G be a graph with vertex set V . A path of length n in G is a
sequence of n+1 vertices, v0, v2, . . . , vn−1, vn such that {vi, vi+1} is an edge of G for each
i = 0, . . . , n− 1. The origin of the path is v0 and the terminus is vn. The path is called
simple if no edge is traversed twice.

Definition 5.2. Let T be a finite tree with vertex set V . For each t ∈ V let

dT (t) = max{ length P : P is a simple path with origin t}

Let the diameter of T be
D(T) = max

t∈V
d(t)

Definition 5.3. Let T be a tree and let {t, u} be an edge of T . Then T without the
edge {t, u} is the disjoint union of two trees. Let Tt,u be the tree containing t and let
Tut be the tree containing u.

Lemma 5.4. Let T be a finite tree and let {t, u} be an edge of T . Then dTt,u(t) < dT (u).

Proof: Let n = dTt,u(t) and let P = t, x1, . . . , xn be a simple path of length n with
origin t. Then Q = u, t, x1, . . . , xn is a simple path in T of length n + 1 with origin u.
Therefore, dT (u) ≥ n + 1

The following proof applies to both the sum-product and the max-product algorithms.

Theorem 5.5. Let V and Λ be the vertex sets of a bipartite graph G. Suppose that G is

a tree and that the leaves of G are all elements of V . The local sum-product will converge

after D(G)/2 iterations.

Proof: We proceed by induction using as induction hypothesis the following two state-
ments.

* For any edge (i, α) with dGiα
(i) ≤ 2r, µiα is constant after r iteration.

For any edge (i, α) with dGαi
(α) ≤ 2r − 1, ναi is constant after r iterations.

It is clear that dGiα
(i) ≤ D(G) and, since α ∈ Λ is not a leaf, dGαi

(α) ≤ D(G) − 1.
Therefore, once * is established, for r = D(G)/2, we see that µiα and ναi are both
constant after r iterations.

When r = 0, dGαi
(α) ≤ −1 is never true and dGiα

(i) ≤ 0 only when i is a leaf and α
is the lone vertex adjacent to i. In the algorithm,

µiα(a) = pi(a)
∏

β3i
β 6=α

νβi(a)

= pi(a)

since the product is over the empty set.
Assume the induction hypothesis is true for r − 1. Let (i, α) be an edge such that

dGαi
(α) ≤ 2r−1. From the algorithm we see that ναi is dependent only on the unchanging

18

function χ and the (r − 1)th computation of µjα, for j adjacent to α, and j 6= i. Each
such j is a vertex of Gαi, and by the lemma,

dGjα
(j) ≤ dGαi

(α)− 1 ≤ 2r − 2

Therefore the induction hypothesis applies and µjα is constant after r − 1 iterations.
consequently, ναi is constant after r iterations.

Let(i, α) be an edge such that dGiα
(i) = 2r. Let β 6= α be adjacent to i. From the

algorithm we see that µiα is dependent only on the rth computation of νβi for β adjacent
to i and β 6= α. Each such β is a vertex of Giα and by the lemma

dGβi
(β) ≤ dGiα

(i)− 1 ≤ 2r − 1

The previous paragraph shows that νβi is constant after r iterations. Thus µiα is constant
after r iterations.

The induction hypothesis can be made more precise.

Corollary 5.6. For any edge (i, α) with dGiα
(i) ≤ 2r, let Giα have vertex sets U ⊆ V

and Γ ⊆ Λ. Then after r iterations

µiα(a) =
∑

v∈
� U

vi=a

∏

j∈U

pj(vj)
∏

β∈Γ

χ(vβ)

For any edge (i, α) with dGαi
(α) ≤ 2r − 1, let G′ be the union of Gαi with the vertex

i and the edge (i, α). Let G′ have vertex sets U ⊆ V and Γ ⊆ Λ. Then

ναi(a) =
∑

v∈
� U

vi=a

∏

j∈U
j 6=i

pj(vj)
∏

β∈Γ

χ(vβ)

Proof: By induction. The notation is a bit out of hand, so I am still working on this.
Perhaps the best way to prove it is to work in a more general setup as in [6].

Notice also that
∑

v∈
�

V

vi=a

Q(v) = µiα(a)ναi(a)

19

6 Another Version of the Sum-Product Algorithm

We have shown that the sum-product algorithm produces the most likely bit when the
graph of the check matrix is a tree (13). Unfortunately the resulting codes tend to have
low minimum distance and are not good for error correction. In practice, decoding is
very successful using variants of these local algorithms even when the graph is not a tree.
If the graph is sparse then the computational complexity is low, and if the graph has no
small cycles (say girth 8, or even girth 6 if the 6 cycles are rare) then the performance
is excellent.

This is rather mysterious to me, and I would like to understand it better. A recent
paper [2] has several references and a very nice approach to identifying the conditions
that determine good coding performance.

A separate issue is the computational one. The initial values pi(a) are between 0
and 1 so for n large the products that we take become quite small. [7] discusses several
computational tricks to handle this practical problem. Here is my interpretation, but it
is untested!

Let p be a distribution on a two element set, say
�
. We define

δp = p(0)− p(1)

%p = p(1)/p(0)

Then it is easy to verify that

δp =
1− %p

1 + %p
%p =

1− δp

1 + δp

Notice also that δp is in the interval [−1, 1] while, if we allow infinity as a limit, %p is in
the interval [0,∞].

δp = 0 ⇐⇒ p(0) = p(1) ⇐⇒ %p = 1

δp = 1 ⇐⇒ p(0) = 1 ⇐⇒ %p = 0

δp = −1 ⇐⇒ p(0) = −1 ⇐⇒ %p = ∞

In the sum-product algorithm,

µiα(a) = pi(a)
∏

β3i
β 6=α

νβi(a)

So

%µiα = %pi(a)
∏

β3i
β 6=α

%νβi

From the definition of qi in the algorithm we also have

%qi = %pi(a)
∏

β3i

%νβi

20

Then

%µiα = %qi/%ναi

The local sum-product algorithm also sets

ναi(a) =
∑

v∈
� α

vi=a

χ(v)
∏

j∈α
j 6=i

µjα(vj)

Let γ = α \ {i}, then

ναi(a) =
∑

v∈
� γ

wt(v)=a mod 2

∏

j∈γ

µjα(vj)

Applying Proposition 3.1,

δναi =
∏

j∈α
j 6=i

δµjα

Letting Qα be defined by

δQα =
∏

j∈α

δµjα

We have

δναi =
δQα

µiα

This motivates the following algorithm

Input For each vertex i ∈ V , %pi.

Data Structures

For each edge (i, α), two real numbers. δµiα and %ναi.

For each i a real number %qi.

For each α a real number δQα

Initialization For each edge (i, α)

δν
(0)
αi = 1

%q
(0)
i = %pi

21

Algorithm For r = 1 to R.

δµ
(r)
iα =

%ν
(r−1)
αi − %q

(r−1)
i

%ν
(r−1)
αi + %q

(r−1)
i

δQ(r)
α =

∏

i adjα

δµ
(r)
iα

%ν
(r)
αi =

δµ
(r)
iα − δQ

(r)
α

δµ
(r)
iα + δQ

(r)
α

%q
(r)
i = %pi

∏

α adj i

%ν
(r)
αi

Output The hard decision based on %qi: Vector w ∈ � V such that

wi =

{

1 if %qi > 1

0 else

When %qi goes to 0, ith bit is a 0.
When %qi goes to ∞, ith bit is 1.

22

Exercises for iterative decoding

.
1) Let C be the binary code of length n consisting of all codewords whose weight is

even. In other words, a check matrix for C is a single column vector of all 1’s. Write a
program for iterative decoding.

2) Consider the Hamming code of length 7 with check matrix.

H =

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

a) Draw the graph.
b) Let p be the vector whose entry pi is the probability that the ith bit is 0. Let
p = [.2, .4, .9, .7, .4, .6, .9]. Do one iteration of the iterative decoding algorithm by hand.
c) Write a program to take as input an arbitrary vector of probabilities (p1(0), . . . , p7(0)).
Experiment to determine which vectors decode to the all zero vector.

3) Majority logic decoding uses hard decision input and a simple iterative algorithm
that changes a given bit if the majority of its neighbors “think” it should change. Im-
plement this algorithm and test it.

4) Here is another simplified algorithm. For each bit, the input is either a 0 or a
1 or an ersasure. The decoder never changes a 0 or 1, but it can change erasures. If
a particular check bit is connected to exactly one erasure bit, it uses the data from
the other “known” bits to decide what the erasure should be. Implement and test this
algorithm. It should be very fast. Experiment with a variety of codes of this type. [14] .

5) Implement the iterative decoding algorithm for arbitrary soft decision input. Ex-
periment with different ways to represent the probability distribution for each bit. For
each vertex i you can store pi(0), pi(0) − pi(1), or pi(0)/pi(1). Justify the formulas you
use. See [7, p.512].

6) Experiment with constructions of LDPC codes from groups. See [8, 9, 10, 11] .
7) Experiment with codes from generalized quadrangles. See See [12].
8) Experiment with codes constructed from geometries. See [13].
9) Experiment with the construction of erasure correcting codes. See [14].

23

References

[1] R. G. Gallagher, “Low-density parity-check codes,” IRE Trans. Inform. theory vol
IT-8, pp. 21-28, Jan. 1962.

[2] R. Koetter, P. Vontobel, “Graph-covers and iterative decoding of finite length
codes,” manuscript.

[3] M. Tanner “A recursive approach to low complexity codes” IEEE Trans. Inform.

Theory, Sep. 1981.

[4] J. Perl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauffman, 1988.

[5] Wiberg, “Codes and decoding on graphs,” Ph.D. dissertation, no. 440, Linkoping
Sweden, 1996.

[6] Aji, McEliece, “The generalized distributive law,” IEEE Trans. Inform. Theory,
Mar. 2000.

[7] F. R. Kschischang, B. JK. Frey, H.-A. Loelinger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, Feb. 2001.

Constructions **********************

[8] Rosenthal, Vontobel. “Construction of LDPC codes using Ramanujan graphs
and ideas from Margulis” see http://www.nd.edu/ ˜ rosen/preprints.html, or
http://www.isi.ee.ethz.ch/˜vontobel/.

[9] Margulis, “Explicit constructions of graphs without short cycles and low density
codes. Combinatorica, 2(1), pp. 71-78, 1982

[10] Margulis, “Explicit group theoretic constructions of combinatorial schemes and their
applications in the constructin of expanders and concentrators.” Problems Inform.

Transmission 24(1):39-46, 1988.

[11] Tanner, Srkdhara, Fuja “A Class of Group-Structured LDPC Codes,”
http://www.cse.ucsc.edu/˜tanner/pubs.html.

[12] Tanner, Vontobel, “Construction of codes based on finite generalized quadrangles
for iterative decoding,” http://www.isi.ee.ethz.ch/˜vontobel/ under porjects.

[13] Kou, Lin, Fossorier, “Low density parity check codes based on finite geometries,”
IEEE Trans. Inform. Theory, Vol. 47, no. 7, 2001, pp. 2711-2736.

http://www-ee.eng.hawaii.edu/˜marc/publications.html (#43).

[14] Luby, Mitzenmacher, Shokrollahi, Spielman, “Efficient erasure correcting codes”
IEEE, Trans. Inform. Theory Feb. 01, pp 569-584.

24

