Math 625: Coding Theory

Homework III

Problem 1: In the section called Key Polynomials, we use the matrix

	[1	1	1	 	1]
	1	α	α^2	 	α^{-k-1}
	1	α^2	α^4	 	α^{-2k-2}
H =	1	α^3	α^6	 	$ \begin{array}{c}1\\\alpha^{-k-1}\\\alpha^{-2k-2}\\\alpha^{-3k-3}\\\ldots\end{array}$
	1	α^{n-1}	α^{n-2}	 	$\left[\alpha^{k+1} \right]$

as check matrix. Determine the generator polynomial for this code. Determine the generator polynomial for the dual code. Draw the circuit for non-systematic encoding using multiplication by the generator polynomial. Draw the circuit for systematic encoding.

Problem 2: Let $\alpha \in \mathbb{F}_{16}$ satisfy $\alpha^4 = \alpha + 1$. Draw circuitry for multiplication by α^7 .

Problem 3: Let $f(x) = \sum_{i=0}^{m} f_i x^i$ be a polynomial of degree m and let α be a constant. Horner's method for the computation of $f(\alpha)$ is iterative

$$c_0 = f_m$$

$$c_i = f_{m-i} + c_{i-1} * \alpha$$

Prove inductively that $c_k = \sum_{i=m-k}^m f_i \alpha^{i-m+k}$. Conclude that $c_m = f(\alpha)$. Show that Horner's method may be implemented by the circuit given in class.

Problem 4: Let *e* be an error vector and let $f^e(x)$ be the error locator and $\phi^e(x)$ the error evaluator polynomials as described in the notes. Prove that for each *i* such that $e_i \neq 0$,

$$e_i = \frac{\phi^e(\alpha^i)}{(f^e)'(\alpha^i)}$$

Problem 5: Let $\alpha \in \mathbb{F}_9$ satisfy $\alpha^2 = \alpha + 1$. We will use the code $RS(n-k)^{\perp}$ which has dimension 5. Use Magma or Maple to compute the generator polynomial. Systematically encode $x^2 + 1$ for this code (do this by hand).