Mike O'Sullivan

Math 625: Coding Theory

Homework III

Problem 1: In the section called Key Polynomials, we use the matrix

$$
H=\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & \ldots & 1 \\
1 & \alpha & \alpha^{2} & \ldots & \ldots & \alpha^{-k-1} \\
1 & \alpha^{2} & \alpha^{4} & \ldots & \ldots & \alpha^{-2 k-2} \\
1 & \alpha^{3} & \alpha^{6} & \ldots & \ldots & \alpha^{-3 k-3} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & \alpha^{n-1} & \alpha^{n-2} & \ldots & \ldots & \alpha^{k+1}
\end{array}\right]
$$

as check matrix. Determine the generator polynomial for this code. Determine the generator polynomial for the dual code. Draw the circuit for non-systematic encoding using multiplication by the generator polynomial. Draw the circuit for systematic encoding.

Problem 2: Let $\alpha \in \mathbb{F}_{16}$ satisfy $\alpha^{4}=\alpha+1$. Draw circuitry for multiplication by α^{7}.
Problem 3: Let $f(x)=\sum_{i=0}^{m} f_{i} x^{i}$ be a polynomial of degree m and let α be a constant. Horner's method for the computation of $f(\alpha)$ is iterative

$$
\begin{aligned}
c_{0} & =f_{m} \\
c_{i} & =f_{m-i}+c_{i-1} * \alpha
\end{aligned}
$$

Prove inductively that $c_{k}=\sum_{i=m-k}^{m} f_{i} \alpha^{i-m+k}$. Conclude that $c_{m}=f(\alpha)$. Show that Horner's method may be implemented by the circuit given in class.

Problem 4: Let e be an error vector and let $f^{e}(x)$ be the error locator and $\phi^{e}(x)$ the error evaluator polynomials as described in the notes. Prove that for each i such that $e_{i} \neq 0$,

$$
e_{i}=\frac{\phi^{e}\left(\alpha^{i}\right)}{\left(f^{e}\right)^{\prime}\left(\alpha^{i}\right)}
$$

Problem 5: Let $\alpha \in \mathbb{F}_{9}$ satisfy $\alpha^{2}=\alpha+1$. We will use the code $R S(n-k)^{\perp}$ which has dimension 5. Use Magma or Maple to compute the generator polynomial. Systematically encode $x^{2}+1$ for this code (do this by hand).

