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Chapter 1

Reed-Solomon Codes and the

Berlekamp-Massey Algorithm

1.1 Codes

Let F be a field and let Fn be a vector space of dimension n over F . We will write
elements of Fn as row vectors. We define the Hamming distance function D on Fn by

D(x, y) = #{i : xi 6= yi}

It is straightforward to prove that D is a metric (do it!); that is

D(x, y) ≥ 0 with equality iff x = y

D(x, y) = D(y, x)

D(x, y) +D(y, z) ≥ D(x, z)

The Hamming weight of a vector is the number of nonzero positions in x; so wt(x) =
D(x, 0). The support of x is the set of indices i for which xi is nonzero.

An [n, k, d] linear code C is a vector subspace of Fn of dimension k whose minimum
distance is d. The minimum distance is defined by d = min{wt(c) : c ∈ C and c 6= 0}.
We will usually say that C is a code and not mention the linearity, although it will always
be assumed. The dual code of C is the set of vectors orthogonal to all vectors in C,

C⊥ = {v : v · c = 0 for all c ∈ C}

It is also a vector space.
An [n, k, d] code C can be specified by a k × n generator matrix G. Let the rows

of G be a basis for C. Then C = {uG : u ∈ F k}. We can also specify C using a
n × (n − k) parity check matrix H. Let the columns of H be a basis for C⊥. Then
C = {c ∈ Fn : cH = 0}. If G is a generator matrix for C and H is a check matrix for C
then HT is a generator matrix for C⊥ and GT is a check matrix for C⊥.

Since the parity check matrix has n−k columns, any (n−k+1) rows of H are linearly
dependent. Thus for any choice of a subset I ⊂ {1, . . . , n} with (n−k+1) elements there
is a codeword c whose support is contained in I. In particular, the minimum distance of
C is at most n− k + 1. We have just derived the Singleton bound:
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Proposition 1.1.1. Let C be an [n, k, d] linear code. d ≤ n− k + 1.

Definition 1.1.2. A code meeting the Singleton bound is called an maximum distance
separable or MDS code.

Using a code for error correction

Let C be an [n, k, d] code over Fq with generator matrix G and check matrix H. I will
sketch here a standard protocol for using C for error correction.

• We assume that information is presented to the sender as packets of k elements
from Fq. This is treated as a vector in F

k
q .

• Encoding adds redundancy: v = uG is in F
n
q .

• Vector v is sent to the receiver.

• Error in the transmission channel is modeled as a vector e ∈ F
n
q . The receiver gets

w = v + e.

• Decoding is the attempt to recover v. Given w find the closest vector c ∈ C to w
(under the metric D)..

• Once v is found, matrix inversion of some k × k submatrix of G will produce u.

In practice, the final matrix inversion is avoided by using systematic encoding. This
simply means that we choose a generator matrix which has a k × k submatrix which is
the identity matrix (or some permutation of it).

As for decoding, the situation we explore in this chapter is the following. An efficient
algorithm is employed that correctly decodes all vectors of weight less than d/2. For
errors of larger weight the algorithm may decode incorrectly, or it may fail to produce
an answer. The system designer usually has some idea, based on the electronics and
experience, about the likelihood ps of a symbol being in error. The code is chosen so
that d/2 is “comfortably” larger than the expected number of symbol errors nps. The
likelihood of more than t error occuring is then

n
∑

i=dd/2e

(

n

i

)

pi
s(1 − ps)

n−1

This is an upper bound on the probability of not decoding correctly. Provided ps is
reasonably low, by choosing d large enough this can be made very small.

1.2 Reed-Solomon Codes

In this section I will give three different definitions of Reed-Solomon codes. We (well,
you) will show that the definitions are equivalent. The reason to introduce all three
perspectives is that each is useful for a purpose which the others do not satisfy as well.
One gives a direct description of the codewords, another is useful for decoding and the
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third is useful for encoding. Each method also has its own utility in constructing broader
families of codes.

These definitions of Reed-Solomon codes are unusually narrow. I take this narrow
perspective to ease the explanation of the codes and algorithms. Later on we will give a
very general definition and consider a variety of ways to derive other codes from Reed-
Solomon codes.

Throughout this section we will work over the field Fq with α a primitive element of
Fq. The length of the code will always be n = q − 1 and k will designate the dimension
of the code. It will be useful to think of an element v ∈ F

n as indexed from 0 to n − 1,
v = (v0, . . . , vn−1).

Reed-Solomon codes as evaluation codes

Let RSG(k) be the code with k × n generator matrix

G =





















1 1 1 1 . . . . . . . . . 1
1 α α2 α3 . . . . . . . . . αn−1

1 α2 α4 α6 . . . . . . . . . αn−2

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
1 αk−1 α2k−2 α3k−3 . . . . . . . . . αn−k+1





















(1.1)

More precisely, the matrix entries are Gij = αij for i = 0, . . . , k − 1 and j = 0, . . . , n− 1
It is useful to think of this code as being obtained by evaluating polynomials at the

field elements. Consider the non-zero field elements enumerated as αj for j from 0 to
n−1. The ith row of the G may be obtained by evaluating the polynomial xi at the field
elements αj . The code itself can be described independently of the generator matrix as

RSG(k) = {(f(α0), f(α1), f(α2), . . . , f(αn−1))} : f ∈ Fq[x] and deg f < k}

This gives a nice explict description of the codewords.

Reed-Solomon codes as duals of evaluation codes

Let RSH(k) be the code with check matrix

H =





















1 1 1 . . . . . . 1
α α2 α3 . . . . . . αn−k

α2 α4 α6 . . . . . . α2n−2k

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
αn−1 αn−2 αn−3 . . . . . . αk





















(1.2)

Here we have constructed the jth column of the check matrix for j = 1, . . . , k by evalu-
ating the monomial xj at the field elements αi for i = 0, 1, . . . , n − 1. Notice that H is
not quite the transpose of the generator matrix for RSG(n− k).
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One can now prove that the minimum distance of RSH(k) meets the Singleton bound,
n − k + 1. One simply checks that any (n − k) × (n − k) submatrix of H has nonzero
determinant. This means that any (n−k) rows of H are linearly independent. Therefore
there can be no nonzero codeword whose support has n− k or fewer positions.

In addition to establishing the minimum distance, this formulation of Reed-Solomon
codes is useful for decoding.

Reed-Solomon codes as cyclic codes

In this description of Reed-Solomon codes we use an association between vectors (v0, v1, . . . , vn−1)
and polynomials v0 + v1x+ v2x

2 + vn−1x
n−1.

RSC(k) = {(c0, c1, . . . , cn−1) :
n−1
∑

j=0

cjx
j vanishes at α,α2, . . . , αn−k}

This formulation of Reed-Solomon codes is useful for encoding.
You can prove the following theorem as an exercise. We computed the minimum

distance in the section on RSH .

Theorem 1.2.1. RSG(k) = RSH(k) = RSC(k). The minimum distance of a RS(k)
meets the Singleton bound n− k + 1.

From now on we will just write RS(k) for the Reed-Solomon code of dimension k

Exercises 1.2.2.

1. Prove that every (n − k) × (n − k) submatrix of H has nonzero determinant.
(Compare with a Vandermonde matrix.)

2. Write Maple code to construct the matrices G and H for RS(k) and check that
the product is a matrix of zeros.

3. Prove the theorem. Show first that G and H are full rank, and then that GH is a
k × (n− k) matrix of zeros. This shows that RSG = RSH Show directly from the
definition that c ∈ RSC(k) if and only if cH = 0.

1.3 Cyclic Codes and Systematic Encoding

Let F be a field and let R = F [x]/(xn − 1). In this section we show the connection
between cyclic codes of length n over F and ideals of R. We will show that there is a
simple algorithm for encoding cyclic codes. We will also discuss the dual code to a cyclic
code.

Definition 1.3.1. Let τ be the cyclic shift operator,

τ(c0, c1, c2, . . . , cn−1) = (cn−1, c0, c1, c2, . . . , cn−2)

A code of length n over F is called cyclic if τ(c) ∈ C whenever c ∈ C.
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Consider the ring R = F [x]/(xn − 1). We know from the section on polynomial rings
that the set of polynomials of degree less than n is a system of representatives for R and
that equivalence classes of 1, x, x2, . . . , xn−1 form a basis for R as a vector space over F .
With respect to this basis, we can write an arbitrary element a0 + a1x+ · · ·+ an−1x

n−1

in R as a vector (a0, a1, . . . , an−1). The multiplicative structure of R translates nicely to
vector notation because multiplication by x corresponds to cyclic shift,

x(a0 + a1x+ · · · + an−1x
n−1) ≡ an−1 + a0x+ a1x

2 + · · · + an−2x
n−1 mod xn − 1

Recall that any ideal in R is generated by some factor g(x) of xn−1.

Proposition 1.3.2. Let g(x) divide xn − 1. Then the dimension of the ideal 〈g(x)〉 in
R = F [x]/(xn − 1) as a vector space over F is n− deg g(x).

Proof: Let g(x)h(x) = xn − 1 and let d = deg g(x). Since 1, x2, . . . , xn−1 generate
R, any element of 〈g(x)〉, is a linear combination of xig(x) for i = 0, . . . , n − 1. I
claim that g(x), xg(x), . . . , xn−d−1g(x) are linearly independent in R. This is equiva-
lent to showing that no nontrivial linear combination of them is divisible by xn − 1.
But,

∑n−d−1
i=0 aix

ig(x), has degree d + max{i : ai 6= 0}, which is at most n − 1. Thus
∑n−d−1

i=0 aix
ig(x) cannot be divisible by xn − 1.

On the other hand, let h(x) = xn−d +
∑n−d−1

i=0 hix
i. Since g(x)h(x) = xn − 1,

xn−dg(x) ≡ −

n−d−1
∑

i=1

hix
ig(x) mod (xn − 1)

Thus xn−dg(x) is linearly dependent, modulo xn−1, on g(x), xg(x), . . . , xn−d−1g(x). By
similar methods, for r > n− d one can show that xrg(x) is equivalent modulo xn − 1 to
a sum of xig(x) i = 0, 1, . . . , n− d− 1. Thus xig(x) i = 0, 1, . . . , n − d− 1 is a basis for
〈g(x)〉.

Theorem 1.3.3. Let C be a cyclic code of length n and dimension k over F . The set
of polynomials I = {c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 : (c0, c1, . . . , cn−1) ∈ C} is an ideal

of R = F [x]/(xn −1). There is a unique codeword (g0, g1, . . . , gn−k, 0, 0, . . . , 0) in C with
gn−k = 1 such that a basis for C is g, τg, τ2g, . . . , τk−1g.

Conversely, any ideal of F [x]/(xn − 1) gives rise to a cyclic code, and distinct ideals
give distinct codes.

Proof: Since C is closed under addition, the set I is also closed under addition. Since
C is closed under multiplication by an element of F , so is I. Since C is closed under
cyclic shift, τ , I is closed under multiplication by x. Now let a0 + a1 + . . . ,+an−1x

n−1

be an arbitrary element of R and let c(x) in I, we seek to prove that their product is
in I. Since I is closed under multiplication by x and by elements of F , aix

ic(x) ∈ I.
Since I is closed under addition (

∑n−1
i=0 aix

i)c(x) ∈ I. This shows that I is closed under
multiplication by an arbitrary element of R, and is therefore an ideal of R.

Any ideal of F [x]/(xn−1) is generated by a factor of xn−1. Let g(x) be the generator
for I. The previous proposition says that the dimension of I is n − deg g(x). Since the
map from C to I is one-to-one, and C has dimension k we have k = n − deg g(x)
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Figure 1.1: Circuitry for multiplying by the polynomial x6 + x4 + x3 + x+ 1.

so deg g(x) = n − k. Furthermore the proof of the proposition shows that xig(x) for
i = 0 . . . n− d− 1 is a basis for I. Thus g, τg, τ2g, . . . , τk−1g is a basis for C.

The proof that any ideal gives a cyclic code should be clear.

The polynomial g(x) in the theorem is called the generator polynomial for C. We will
also call any constant multiple of g(x) a generator polynomial. One generator matrix
for C is
















g0 g1 g2 . . . . . . . . . . . . gn−k 0 . . . . . . . . . . . . 0
0 g0 g1 g2 . . . . . . . . . . . . gn−k 0 . . . . . . . . . 0
0 0 g0 g1 g2 . . . . . . . . . . . . gn−k 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . g0 g1 g2 . . . . . . . . . . . . gn−k

















(1.3)

Encoding

Let C be a cyclic code and suppose that we want to encode the message vector u =
(u0, . . . , uk−1). We can multiply u by G to get a codeword, v = uG and send v. Let
u(x) =

∑k−1
i=0 uix

i. You should check that the components of v are, in appropriate
order, the coefficients of the polynomial product u(x)g(x). Using electronic circuitry it
is much simpler to compute the polynomial product than to compute an arbitrary matrix
product. Blahut’s book has a thorough discussion of circuitry [1, Ch. 6]. Figure 1.3 shows
a circuit for polynomial multiplication.

The product u(x)g(x) has the disadvantage of not being a systematic encoding of
u(x). Fortunately there does exist a method for systematic encoding that is just as
simple. Let q(x) and r(x) be the quotient and remainder when xn−ku(x) is divided by
g(x). Then

xn−ku(x) − r(x) = q(x)g(x) (1.4)
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Figure 1.2: Circuitry for systematic encoding using division by the polynomial x6 +x4+
x3 + x+ 1.

The left-hand side of the equation is

uk−1x
n−1 + uk−2x

n−2 + · · · + u1x
n−k+1 + u0x

n−k + rn−k−1x
n−k−1 + · · · + r1x+ r0

Furthermore since the LHS is a multiple of g(x) the associated vector is a codeword of
C. So this polynomial division gives a systematic encoder. The circuitry is shown in
Figure 1.3.

Refer back to the section on Reed-Solomon codes for the description of RSC(k) over
the field Fq with α a primitive element. You should see that RSC(k) is a cyclic code

of length n = q − 1 with generator polynomial g(x) =
∏n−k

i=1 (x − αi). We can there-
fore systematically encode a Reed-Solomon code using polynomial division as described
above.

The dual code of a cyclic code

Let C be a cyclic code of length n over a field F and let g(x) be the generator polynomial
for C. We know g(x) is a factor of xn − 1, so let us suppose that g(x)h(x) = xn − 1. Let

7



h(x) = h0 + h1x+ h2x
2 + · · · + hkx

k, and consider the matrix

H =











































hk 0 0 0 . . . . . . . . . 0 0
hk−1 hk 0 0 . . . . . . . . . 0 0
hk−2 hk−1 hk 0 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
h0 h1 h2 h3 . . . . . . . . . . . . . . .
0 h0 h1 h2 . . . . . . . . . . . . . . .
0 0 h0 h1 . . . . . . . . . . . . . . .
0 0 0 h0 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . . . . . . . h0 h1

0 0 0 0 . . . . . . . . . 0 h0











































(1.5)

Computing the product of H with G in (1.3), one finds that the product of the ith
row of G and the jth column of H (i = 0, . . . , k−1, j = 0, . . . , n−k−1 ) is the coefficient
of xk+j−i in the product of g(x) and h(x) (see exercise below). Since g(x) and h(x) were
chosen to have product xn − 1, as we let i and j wander over the ranges given we always
get 0. This is because k + j − i is minimized when i = k − 1 and j = 0 for which we
get k + j − i = 1 and it is maximized when i = 0 and j = n − k − 1 for which we get
k + j − i = n − 1. Clearly all the coefficients of xn − 1 for powers of x between 1 and
n− 1 are indeed 0.

Notice that the transpose of H is not in the same form as G, but is quite similar. In
fact, if we define a polynomial h̄(x) = h0x

k+h1x
k−1+· · ·+hk−1x+hk, then HT coincides

with the matrix for the generating polynomial h̄(x). This would seem to imply that h̄(x)
is a factor of xn − 1. Well, it is. Notice that h̄(x) = xkh(1/x). Let ḡ(x) = xn−kg(1/x).
Then

xn − 1 = −xn((1/x)n − 1)

= −xn(g(1/x)h(1/x))

= −(xn−kg(1/x))(xkh(1/x))

= −ḡ(x)h̄(x)

So h̄(x) is a factor of xn − 1, and it is therefore a generator polynomial of a cyclic code.

Definition 1.3.4. Let g(x) be a factor of xn − 1 over the field F , and let d = deg g(x).
The reciprocal polynomial of g(x) (relative to xn − 1) is ḡ(x) = xdg(1/x).

Proposition 1.3.5. Let g(x)h(x) = xn−1 over some field F . The dual of the cylic code
of length n with generator polynomial g(x) is cyclic with generator polynomial h̄(x), the
reciprocal polynomial of h(x).

Exercises 1.3.6.

1. Identify all cyclic codes of length n over F2 for several values of n in the range
n = 5, . . . , 20. For each n make a table showing the possible generator polynomials,
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the dimension of the code, and the polynomial generating the dual code. You can
write the generator in factored form with variable exponents. How many distinct
codes are there altogether?

2. Do the same over F4

3. Do the same over F3.

4. Justify the claim in the subsection on dual codes that the product of the ith row
of G and the jth column of H is the coefficient of xk+j−i in the product of g(x)
and h(x).

5. Explain why RSC(k) is a cyclic code. In the sections on decoding we will use the
code RS(n− k)⊥. What is the generator polynomial for RS(n− k)⊥?

6. Let α ∈ F9 satisfy α2 = α + 1. We will use the code RS(n − k)⊥ which has
dimension 5. Use Maple and exercise 5) to compute the generator polynomial.
Systematically encode x2 + 1 for this code.

7. Implement systematic encoding for Reed-Solomon codes in Maple.

1.4 Decoding of Reed-Solomon codes

Decoding can be broken down into 6 steps:

(1) Compute the syndrome;

(2) Compute the error-locator polynomial;

(3) Compute the error locations;

(4) Compute the error values;

(5) Compute the codeword;

(6) Compute the information vector.

Let C be a Reed-Solomon code of dimension k and length n = q − 1 over Fq. The
generator matrix G, is assumed to be systematic. Let

u be the information vector;

v = uG the codeword;

e the error vector;

w = v + e the received vector.

Since G is systematic, some k components of v are the components of u. We call these the
information symbols, the other n − k components are called the check symbols. Clearly
step (6) in the algorithm is trivial. We simply strip the check symbols from a codeword
and we are left with the information symbols. Step (5) is also simple, we subtract the
output of step (4), the error vector e, from the received vector w to get v = w − e.

Step (1) computes the syndrome of w, the vector s = wH. This is a straight forward
computation, in fact it is actually easier than a general matrix multiplication because of
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the nice structure of H in equation (1.2). If we interpret w as a polynomial, then wH is
the row vector (w(1), w(α), w(α2), . . . , w(αk−1)). For each column of H, the polynomial
evaluation can be done efficiently with Horner’s method (see the exercise below). In
hardware this is implemented with an adder and a single constant multiplier (αj for the
jth column). The syndrome is independent of the codeword that was sent, since cH = 0
for any codeword c. If the syndrome is 0 the received word is a codeword and we presume
that it equals the codeword that was sent. The algorithm proceeds to step (6).

To summarize, steps (1), (5), and (6) of decoding are fairly simple. In the next section,
we explain what the error-locator polynomial is and we show that the computation of
it in step (2) is the key step in decoding. Given the error-locator polynomial steps (3)
and (4) follow quite readily.

Exercises 1.4.1.

1. Let f(x) =
∑m

i=0 fix
i be a polynomial of degreem and let α be a constant. Horner’s

method for the computation of f(α) is iterative

c0 = fm

ci = fm−i + ci−1 ∗ α

Prove inductively that ck =
∑m

i=m−k fiα
i−m+k. Conclude that cm = f(α).

2. Implementation of Horner’s method can be done with the following circuit. Verify
that it works.

1.5 The Key Polynomials

It will be convenient to make the following subtle change to our definition of Reed-
Solomon codes. Recall that the generator matrix for RS(k) and the check matrix for
RS(n − k) were almost transposes of each other. They differ only in the first and last
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rows. We will now switch the roles. Henceforth, we use the parity-check matrix

H =





























1 1 1 . . . . . . 1
1 α α2 . . . . . . α−k−1

1 α2 α4 . . . . . . α−2k−2

1 α3 α6 . . . . . . α−3k−3

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
1 αn−1 αn−2 . . . . . . αk+1





























(1.6)

The generator polynomial for this version of RS(k) is therefore
∏n−k−1

i=0 (x− αi).

The Error Locator Polynomial

Definition 1.5.1. For a vector v we define the locator polynomial to be

f v(x) =
∏

i:vi 6=0

(x− αi) (1.7)

When e is the error vector, we will call f e(x) the error-locator polynomial.

Step (2) of the algorithm takes the syndrome vector s = eH as input and produces
the error-locator polynomial. We now show that the other important steps in decoding,
computation of error locations and error values, is easily accomplished once the error
locator is known. Step (3) of the algorithm takes as input the error-locator polynomial
and produces the set of its roots. This is clearly a simple matter of evaluating the error-
locator polynomial f e(x) at each nonzero field element, αi and returning αi whenever
f e(αi) = 0.

Step (4) of the algorithm takes as input the error locations and the syndrome and
produces the error values. We presume there are t errors with t < d/2. Let i1, i2, . . . , it
be the locations. Since s = vH = eH, we have a matrix equation for the error values
ei1 , . . . eit ,

s =
[

ei1 ei2 ei3 . . . eit−1
eit
]



















αi1 α2(i1) α3(i1) . . . α(n−k−1)(i1)

αi2 α2(i2) α3(i2) . . . α(n−k−1)(i2)

αi3 α2(i3) α3(i3) . . . α(n−k−1)(i3)

. . . . . . . . . . . . . . .

αit−1 α2(it−1) α3(it−1) . . . α(n−k−1)(it−1)

αit α2(it) α3(it) . . . α(n−k−1)(it)



















There are n − k = d − 1 independent equations, and we presumed that there are only
t < d/2 unknowns. So there is a unique solution, and it may be found by inverting the
submatrix consisting of the first t columns.

Inverting a matrix requires O(t3) field operations. We show below that there is a
more efficient way to compute the error locations.
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The syndrome polynomial

Recall that n = q − 1, and that for each nonzero β ∈ Fq, (x − β) is a factor of xn − 1.
Note that

xn − 1

x− β
= xn−1 + βxn−2 + β2xn−3 + · · · + βn−2x+ βn−1

For a vector e, consider the weighted sum of polynomials like those above:

n−1
∑

i=0

ei
xn − 1

x− αi
=

n−1
∑

i=0

ei

n−1
∑

m=0

xn−1−m(αi)m

=

n−1
∑

m=0

xn−1−m
n−1
∑

i=0

ei(α
i)m

=

n−1
∑

m=0

xn−1−msm

where sm =
∑n−1

i=0 ei(α
i)m is a coordinate of the syndrome vector.

Definition 1.5.2. Let v be an arbitrary vector in F
n
q . For m = 0, 1, . . . , n − 1 let

sm =
∑n−1

i=0 vi(α
i)m. The syndrome polynomial associated to e is

se(x) = s0x
n−1 + s1x

n−2 + · · · + sn−2x+ sn−1 (1.8)

=
n−1
∑

i=0

vi
xn − 1

x− αi
(1.9)

The error-evaluator polynomial

Here is another characterization of the error locator polynomial, obtained from the syn-
drome polynomial.

Proposition 1.5.3. Let se(x) be the syndrome polynomial associated to e and let f(x)
be an arbitrary polynomial. Then f(x)se(x) is in the ideal generated by xn − 1 if and
only if f(x) is a multiple of f e(x).

Proof: We have

se(x) = (xn − 1)

n−1
∑

i=0

ei
x− αi

12



Therefore

f e(x)se(x) =





∏

j:ej 6=0

(x− αj)



 (xn − 1)
n−1
∑

i=0

ei
x− αi

= (xn − 1)









n−1
∑

i=0

ei
∏

j:ej 6=0
j 6=i

(x− αj)









This computation shows that f e(x)se(x) is in the ideal generated by xn − 1.
Conversely, suppose that f(x)se(x) ∈ 〈xn − 1〉. Then for each i such that ei 6= 0,

f(x)se(x) ≡ 0 mod x−αi. But only one term in the sum (1.9) is nonzero modulo x−αi,
so

se(x) ≡ ei

n
∏

j=1
j 6=i

(x− αj) mod x− αi

This is nonzero. Thus we must have f(x) congruent to 0 mod x − αi. Since i was
arbitrary, f(x) is divisible by x−αi for each error location i. Therefore f(x) is divisible
by f e(x).

Definition 1.5.4. Let se(x) be the syndrome polynomial for e. Let φe(x) be the poly-
nomial such that f e(x)se(x) = φe(x)(xn −1). We call φe(x) the evaluator polynomial for
e.

The reason we call φe(x) the error-evaluator is that it can be used to evaluate errors.

1.6 Efficient computation of the error values

In this section we derive a formula discovered by Forney that uses the error-evaluator
polynomial to find the error values. Before seeing how that works we need to define the
derivative of a polynomial.

The derivative of a polynomial

Over a finite field we cannot define the derivative using limits because we have no way
to let the distance between two field elements go to zero. Nevertheless, over any field we
can define the derivative using the usual formula.

Definition 1.6.1. Let f(x) = f0 + f1x+ f2x+ · · · + fdx
d be a polynomial defined over

a field F . The derivative of f(x) is the polynomial

f ′(x) = f1 + 2f2x+ 3f3x
2 + · · · + dfdx

d−1

The integer coefficient k of fkx
k−1 is the k-fold sum of 1F , so it is computed modulo the

characteristic of F .

We must verify that the usual rules for differentiation hold.

13



Theorem 1.6.2. The derivative satisfies the following properties. For f(x), g(x) ∈ F [x]
and α ∈ F ,

• (f(x) + g(x))′ = f ′(x) + g′(x) (Linearity)

• (αf(x))′ = αf ′(x) (Homogeneity)

• (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) (Leibnitz’ rule)

Proof: The proofs for linearity and homogeneity are easy. The monomial case of
Leibnitz’ rule follows:

(xixj)′ = (xi+j)′

= (i+ j)xi+j−1

= ixi−1xj + xi(jxj−1)

= (xi)′xj + xi(xj)′

We use the monomial case to derive Leibnitz’ rule for a monomial times an arbitrary
polynomial. One can easily extend to the product of two arbitrary polynomials (exercise).
Let g(x) =

∑

j gjx
j. By linearity and homogeneity of the derivative,

(xig(x))′ =
∑

j

gj(x
ixj)′

Applying Leibnitz’ rule for monomials

=
∑

j

gj((x
i)′xj + xi(xj)′)

= (xi)′
∑

j

gjx
j + xi

∑

j

gj(x
j)′

= (xi)′g(x) + xig′(x)

The Forney formula

We now return to step (4) of decoding, computing the error values. The following
proposition shows that we need only evaluate the two polynomials f e′(x) and φe(x) at
the error locations. The proof is left as an exercise.

Proposition 1.6.3. Let f e(x) and φe(x) be the locator and evaluator polynomial for the
error vector e. For each error position k,

ek =
φe(αk)

f e′(αk)

14



Computing f e′(x) is a simple matter from the definition of the derivative. Comput-
ing φe(x) is basically a polynomial multiplication. Since we know that f e(x)se(x) =
φe(x)(xn − 1), and deg f e(x) = t, we have deg φe(x) = deg f e(x) + deg se(x)−n ≤ t− 1.
Furthermore, the coefficient of xj in φe(x) is the coefficient of xn+j in f e(x)se(x). This
coefficient is

fj+1s0 + fj+2s1 + fj+3s2 + · · · + ft−1st−2−j + ftst−1−j

where f e(x) = f0 + f1x+ · · · + ftx
t.

It is worth pointing out that the decoder can only compute the first few terms of
se(x)—namely smx

m for m ≤ n− k− 1. At first glance it seems that we cannot hope to
compute φe(x), since it is the product of f e(x) and se(x). But, the previous paragraph
shows that we only need sm for m ≤ t − 1 to compute φe(x). Since t < d/2 and
d = n− k + 1, the decoder does have access to the data necessary to compute φe(x).
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1.7 The Berlekamp-Massey Algorithm

Let f(x) = f0 + f1x + f2x
2 + · · · + fn−k−1x

n−k−1 be any polynomial and let f =
(f0, f1, . . . , fn−k−1) be the associated vector. Then

Hf =





















1 1 1 . . . . . . 1
1 α α2 . . . . . . αn−k−1

1 α2 α4 . . . . . . α2(n−k−1)

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
1 αn−1 αn−2 . . . . . . αk+1





































f0

f1

f2

. . .

. . .
fn−k−1

















=

























f(1)
f(α)
f(α2)
. . .
. . .
. . .
. . .

f(αn−1)

























For an error vector e and syndrome vector s we have

sf = eHf

= e

























f(1)
f(α)
f(α2)
. . .
. . .
. . .
. . .

f(αn−1)

























=

n−1
∑

i=0

eif(αi)

Notice that letting f(x) = xm we get sf =
∑n−1

i=0 ei(α
i)m = sm. This discussion moti-

vates the following definition.

Definition 1.7.1. Given an error vector e we define the syndrome map

Se : Fq[x] → F

f(x) 7→
n−1
∑

i=0

eif(αi)

Note that Se is linear. For f(x), g(x) ∈ Fq[x] and for β ∈ Fq, S
e(f(x) + g(x)) =

Se(f(x)) + Se(g(x) and Se(βf(x)) = βSe(f(x)).
Here is an important property of the error locator polynomial:

Se(f e(x)) =
n−1
∑

i=0

eif
e(αi) = 0

This is because f e(αi) = 0 whenever ei 6= 0. Furthermore, Se(xrf e(x)) = 0 since xrf e(x)
also vanishes at all αi such that ei 6= 0.
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Proposition 1.7.2. Let e have weight t and suppose that f(x) satisfies Se(xrf(x)) = 0
for r = 0, 1, . . . , t− 1. Then f(x) is a multiple of f e(x), the locator polynomial for e. In
particular, if deg f(x) ≤ t then f(x) is a constant multiple of f e(x).

Proof: If Se(xrf(x)) = 0 for all r = 0, . . . , t − 1 then Se(g(x)f(x)) = 0 for any
polynomial g(x) with deg g(x) < t− 1. Suppose that ek 6= 0. Let

g(x) =
∏

i:ei 6=0
i6=k

(x− αi)

Then g(x) vanishes at all error positions except αk. Consequently,

Se(g(x)f(x)) =

n−1
∑

i=0

eig(α
i)f(αi)

= ekg(α
k)f(αk)

Now ek 6= 0, g(αk) 6= 0 and, since deg g(x) = t − 1, we know Se(f(x)g(x)) = 0. This
forces f(αk) = 0. Since k was chosen arbitrarily such that ek 6= 0, we conclude that
f(αk) = 0 for all k such that ek 6= 0. Thus f(x) is a multiple of f e(x). Finally, if
deg f(x) = t, then, since deg f e(x) = t, f(x) must be a constant multiple of f e(x).

We now come to the algorithm for computing the error-locator polynomial.

The Berlekamp-Massey algorithm

Definition 1.7.3. Let f(x) ∈ Fq[x]. Suppose r is such that Se(xrf(x)) 6= 0 but
Se(xif(x)) = 0 for 0 ≤ i < r. We define the span, fail and discrepancy of f(x) to
be

• span f(x) = r,

• fail f(x) = deg f(x) + r,

• disc f(x) = Se(xrf(x)).

If there is no such r then span f(x) and fail f(x) are defined to be infinite.

You will prove in an exercise that if span f(x) = c then for any polynomial g(x) of
degree less than c, Se(f(x)g(x)) = 0.

We need two basic results to establish the validity of the Berlekamp-Massey algo-
rithm. The first concerns the impact of the existence of a polynomial having span c
on polynomials of degree c. The second is the basic idea in the update process in the
Berlekamp-Massey algorithm.

Proposition 1.7.4. Let deg f(x) = b, span f(x) = c. For any polynomial g(x) of degree
c, span g(x) ≤ b.

Furthermore, for any g(x) of degree at most c, fail g(x) ≤ c+ b.
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Proof: We know that Se(xi(f(x)) = 0 for i < c and that Se(xcf(x)) 6= 0. Let g(x) be
any polynomial of degree c. We want to show that Se(xig(x)) 6= 0 for some i ≤ b. It is
sufficient to show that Se(f(x)g(x)) 6= 0.

Let α ∈ Fq be the leading coefficient of g(x). Then deg(g(x) − αxc) < c. Therefore

Se(f(x)g(x)) = Se(f(x)(g(x) − αxc)) + Se(αxcf(x))

= αSe(xcf(x))

This is nonzero, so span g(x) ≤ b and fail g(x) ≤ b+ c as was to be proved.
For any i between 0 and c, deg xif(x) = b + i, spanxif(x) = c − i. Therefore any

polynomial of degree c − i has fail at most c + b. This establishes the last statement of
the theorem.

Corollary 1.7.5. Let e have weight t. If span f(x) ≥ t then span f(x) is actually infinite;
that is, f(x) is a multiple of f (e)(x).

Proof: Suppose that span f(x) ≥ t but is finite. By the proposition, for any polynomial
g(x) of degree t, fail g(x) must be finite. This contradicts the existence of f (e)(x) which
has degree t and infinite fail. Thus any polynomial of finite span has span less than t.

Proposition 1.7.6. Suppose that f(x) has span r and discrepancy µ and that g(x) has
span c and discrepancy ν. If r ≤ c then h(x) = f(x) − (µ/ν)xc−rg(x) has span larger
than r.

Proof: Notice that spanxc−rg(x) = r since

Se(xixc−rg(x)) = Se(xc−(r−i)g(x))

=

{

0 if i < r

ν if i = r

Since Se is linear it is clear that spanh(x) ≥ r, and the coefficient of g(x) is chosen so
that we get cancellation of the discrepancies.

Se(xr(f(x) − (µ/ν)xc−rg(x))) = Se(xrf(x)) − (µ/ν)Se(xcg(x))

= µ− (µ/ν)ν

This shows that spanh(x) > r.

Here is the Berlekamp-Massey algorithm, for the code RS(k) over Fq with check
matrix (1.6).

Data: Compute for each m, polynomials f (m)(x) and g(m)(x).

Initialization: For m = −1, f (−1)(x) = 1 and g(−1)(x) = 0.
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Algorithm: For m = 0 to n− k − 1, let

r = m− deg f (m−1)(x)

µ = Se(xrf (m−1)(x))

c = deg f (m−1)(x) − 1 = m− r − 1

If r ≤ c or µ = 0

[

f (m)(x)

g(m)(x)

]

=

[

1 −µxc−r

0 1

] [

f (m−1)(x)

g(m−1)(x)

]

Otherwise,

[

f (m)(x)

g(m)(x)

]

=

[

xr−c −µ
µ−1 0

] [

f (m−1)(x)

g(m−1)(x)

]

Output f (n−k−1)(x).

Theorem 1.7.7. At the end of the mth iteration,

1) f (m)(x) is monic, deg f (m)(x) ≤ m+ 1 and fail f (m)(x) > m

2) g(m)(x) is either 0 or

span g(m)(x) = deg f (m)(x) − 1,

fail g(m)(x) ≤ m, and

disc g(m)(x) = 1

Proof: We proceed by induction. The initial case, m = −1 is easily verified. Assume
the statements of the theorem are true for m− 1; we will prove them for m.

Consider the mth iteration of the algorithm. If µ = 0 then f (m−1)(x) satisfies
fail f (m−1)(x) > m, so the algorithm sets f (m)(x) = f (m−1)(x) and g(m)(x) = g(m−1)(x).
Item 2) of the proposition is true by the induction hypothesis.

Now consider µ 6= 0. If r ≤ c, then the algorithm sets

f (m)(x) = f (m−1)(x) − µxc−rg(m−1)(x)

Both terms on the right hand side have span r, and discrepancy µ, so by Proposition 1.7.6,
span f (m)(x) > r. We will show next that deg f (m)(x) = deg f (m−1)(x), so fail f (m)(x) >
m as desired. Furthermore, since g(m) = g(m−1), the induction hypothesis shows that
item 2) is satisfied.

By the induction hypothesis on g(m−1)(x),

deg g(m−1)(x) = fail g(m−1)(x) − span g(m−1)(x)

≤ m− 1 − c
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Therefore we have

deg xc−rg(m−1)(x) ≤ c− r + (m− 1 − c)

= m− r − 1

< deg f (m−1)(x)

This shows that deg f (m)(x) = deg f (m−1)(x) and also that f (m)(x) is monic.
Finally, suppose that µ 6= 0 and r > c. Similar computations to those in the preceed-

ing case show that f (m)(x) = xr−cf (m−1)(x)−µg(m−1)(x) is monic, of degree r+1 ≤ m+1
and with fail f (m)(x) > m. Furthermore, g(m)(x) = µ−1f (m−1)(x) has span r, fail m,
and discrepancy 1. The details are left as an exercise.

Remark 1.7.8. Since span g(m)(x) = deg f (m)(x) − 1 and fail g(m)(x) ≤ m, Proposi-
tion 1.7.4 tells us that no polynomial of degree less than deg f (m)(x) has fail larger than
m. We know that fail f e(x) > m for all m, so deg f (m)(x) ≤ deg f e(x) = wt e.

In the algorithm, the case where r ≥ deg f (m)(x) and µ 6= 0 leads to a change of
degree in the f polynomial. The reason for the change is evident from the remark, if
span f (m)(x) ≥ deg f (m)(x), then no polynomial of degree deg f (m)(x) can have fail larger
than m.

Corollary 1.7.9. Let wt e = t. For m ≥ 2t − 1, f (m)(x) = f e(x). Therefore, using the
Berlekamp-Massey algorithm for decoding the code RS(k) whose minimum distance is
d = n− k + 1, the error locator can be found provided wt e ≤ (d− 1)/2.

Proof: Let m ≥ 2t− 1. By the remark, deg f (m)(x) ≤ t. By the theorem,

fail f (m) > m, so,

span f (m)(x) > m− deg f (m)(x)

span f (m)(x)2t− 1 − t

Thus span f((m)(x) ≥ t. By Corollary 1.7.5 f (m)(x) must be a multiple of f e(x). But
f (m)(x) is monic of degree t so it must equal f e(x).

For RS(k) with check matrix H in (1.6), the algorithm iterates from 0 to n− k − 1.
If the number of errors is t and t ≤ (d− 1)/2 then

2t− 1 ≤ d− 2

= n− k − 1

so f (n−k−1)(x) is the error locator.

Exercises 1.7.10.

1. For a vector e, suppose that span f(x) = r. Using the linearity of Se, show that
Se(fg) = 0 for all g with degree less than r, but that Se(fg) 6= 0 for all g with
degree r.
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2. Fill in the details in the proof of Theorem 1.7.7 for µ 6= 0 and r > c (that is
r ≥ deg f (m−1)(x)).

3. Let α ∈ F9 satisfy α2 = α+1. Consider the RS code over F9 with k = 4 and check
matrix from (1.6). Assume the vector received is w = (α7, 0, 1, α, α4 , α4, α3, α6).
Compute the syndrome, apply the Berlekamp-Massey algorithm to get the error
locator polynomial, compute the error locations, compute the error evaluator poly-
nomial, compute the error vector, and compute the nearest codeword to w.

4. Let α ∈ F16 satisfy α4 = α + 1. Consider the RS code over F16 with k = 9 and
check matrix from (1.6). Decode, as in the previous exercise, the received vector
w = (1, 1, α2, α11, 1, α7, 1, α6, α8, α, α9, α5, 1, α6, α7)

1.8 More on Error Evaluation

One drawback of the method for error evaluation described in the previous section is that
the computation of the evaluator polynomial introduces a delay between the computation
of the locator polynomial and the computation of the error values. We show in this
section that the Berlekamp-Massey algorithm can be extended to compute the error
evaluator polynomial as well as the error locator polynomial. Using this extension of
the Berlekamp-Massey algorithm eliminates the aforementioned delay, but it introduces
a different practical problem. It requires extra storage to handle two new polynomials
φ(m)(x) and ψ(m)(x). Fortunately, an even better method will be derived from the
extended BM algorithm that eliminates the need to compute the evaluator polynomial.

Here is the Berlekamp-Massey algorithm, for the code RS(k) over Fq with check
matrix (1.6).

Data: Compute for each m, a matrix of polynomials

B(m) =

[

f (m)(x) φ(m)(x)

g(m)(x) ψ(m)(x)

]

Initialization: For m = −1,

B(−1) =

[

1 0
0 −1

]

Algorithm: For m = 0 to n− k − 1, let

r = m− deg f (m−1)(x)

µ = Se(xrf (m−1)(x))

c = deg f (m−1)(x) − 1 = m− r − 1

If r ≤ c or µ = 0, set

U (m) =

[

1 −µxc−r

0 1

]
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Otherwise, set

U (m) =

[

xr−c −µ
µ−1 0

]

Then,

B(m) = UB(m−1)

Output f (n−k−1)(x) and φ(n−k−1)(x).

The polynomials f (m)(x) and g(m)(x) in the new algorithm are clearly the same as
those produced by the original one. Before proving the algorithm produces φe(x) we
need the following proposition.

Proposition 1.8.1. For 0 ≤ r ≤ n−1−deg f(x), Se(xrf(x)) is the coefficient of xn−1−r

in f(x)se(x).

Proof: Let f(x) = f0 + f1x+ f2x
2 + · · · + fdx

d with d ≤ n− 1. Then

Se(f(x)) = f0s0 + f1s1 + . . . fdsd

Since d ≤ n− 1, this is also the coefficient of xn−1 in f(x)se(x). Likewise Se(xrf(x)) is
the coefficient of xn−1 in xrf(x)se(x) and therefore is also the coefficient of xn−1−r in
f(x)se(x).

Theorem 1.8.2. At the end of the mth iteration of the algorithm,

1) deg φ(m)(x) < deg f (m)(x).

2) f (m)(x)s(x) − φ(m)(x)(xn − 1) has degree at most n−m+ deg f (m)(x) − 2

3) g(m)(x)s(x) − ψ(m)(x)(xn − 1) is monic and has degree exactly n− deg f (m)(x).

Proof: From Theorem 1.7.7 we know that deg f (m)(x) ≤ m+1, so n−m+deg f (m)(x)−
2 ≤ n − 1. Thus item 2) ensures that the highest degree terms of f (m)(x)s(x) and
φ(m)(x)(xn − 1) must cancel. Since deg s(x) ≤ n − 1 this forces φ(m)(x) < deg f (m)(x).
Thus establishing item 2) also proves item 1).

We proceed by induction. When m = −1, we have f (−1)(x) = 1, which has degree
0, and φ(−1)(x) = 0. Therefore item 2) says deg s(x) < n, which is true. We also have
g(−1)(x) = 0 and ψ(−1)(x) = −1 so item 3) says that xn − 1 is monic of degree n, which
is also true.

Assume the statements of the theorem are true for m− 1; we will prove them for m.
Let c = deg(f (m−1)(x)) − 1. By the induction hypothesis,

deg
(

f (m−1)(x)s(x) − φ(m−1)(x)(xn − 1)
)

≤ n− (m− 1) + deg f (m−1)(x) − 2

= n−m+ c = n− 1 − r
(

deg g(m−1)(x)s(x) − ψ(m−1)(x)(xn − 1)
)

= n− c+ 1.
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In the algorithm we set µ = Se(xrf (m−1)(x)) where r = m− c+ 1. By the proposition,
µ is the coefficient of xn−m+c in f (m−1)(x)s(x). If µ = 0, both items of the proposition
are satisfied by setting B(m) = B(m−1).

If µ 6= 0 then the degree of f (m−1)(x)s(x) − φ(m−1)(x)(xn − 1) is exactly
n−m+ c. If r ≤ c then the algorithm sets

f (m)(x) = f (m−1)(x) − µxc−rg(m−1)(x)

φ(m)(x) = φ(m−1)(x) − µxc−rψ(m−1)(x)

Therefore we get,

f (m)(x)s(x) − φ(m)(x)(xn − 1)

=
[

f (m−1)(x)s(x) − φ(m−1)(x)(xn − 1)
]

− µ
[

xc−r
(

g(m−1)(x)s(x) − ψ(m−1)(x)(xn − 1)
)]

(1.10)

By the induction hypothesis, both bracketed terms have degree n −m + c. The factor
µ ensures the leading terms cancel. Thus f (m)(x)s(x) − φ(m)(x)(xn − 1) has degree at
most n−m+ deg f (m)(x) − 2 as required.

The case when r ≥ deg f (m)(x) is similar. One shows that deg f (m)(x) = r + 1 and
that f (m)(x)s(x) − φ(m)(x)(xn − 1) has degree at most n −m + r − 1. Check that this
satisfies item 2) and also that g(m)(x)s(x) − ψ(m)(x)(xn − 1) is monic and has degree
n− deg f (m)(x) = n− r − 1 as required in item 3).

Corollary 1.8.3. Let wt e = t. When m ≥ 2t− 1, φ(m)(x) = φe(x).

Proof: For m ≥ 2t− 1, Corollary 1.7.9 says that f (m)(x) = f e(x). We also know that
f e(x)s(x) = φe(x)(xn − 1). Therefore,

f (m)(x)s(x) − φ(m)(x)(xn − 1) = φe(x)(xn − 1) − φ(m)(x)(xn − 1)

= (φe(x) − φ(m)(x))(xn − 1)

The theorem says that f (m)(x)s(x)−φ(m)(x)(xn −1) has degree at most n−m+ t−1 ≥
n− t. This is less than n so φe(x) = φ(m)(x).

Error evaluation without the evaluator polynomial

The real benefit of the previous algorithm is not that it is the most practical, but that it
gives a new formula for computing error values that does not require the error evaluator
φe(x).

From the algorithm it is clear that

B(m) =

(

m
∏

i=0

U (i)

)

B(−1)
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Since B(−1) has determinant 1 and each U (i) has determinant 1 we get

detB(m) = f (m)(x)ψ(m)(x) − g(m)(x)φ(m)(x)

= −1

In particular, when m ≥ 2t + 1 we see that g(m)(x) and ψ(m)(x) are two polynomials
that give a combination of f e(x) and φe(x) which is -1. Let αi be an error position.
Then evaluating at αi we get g(m)(αi)φe(αi) = 1. From Proposition 1.6.3 we have
φe(αi) = eif

e′(αi). Substituting in the previous equation we have established the fol-
lowing proposition.

Proposition 1.8.4. Let wt e = t. For m > 2t− 1 and g(m)(x) be as in the Berlekamp-
Massey algorithm. If ek 6= 0 then

ek = (f e′(αk) g(m)(αk))−1 (1.11)

Exercises 1.8.5.

1. Fill in the details in the proof of Theorem 1.8.2 for µ 6= 0 and r ≥ deg f (m)(x).

2. Using (1.11), find the error values for problem 3) of Section 1.7. Check also that
for m = n− k − 1, the last iteration of the algorithm, we have

f (e)(x)ψ(m)(x) − g(m)(x)ψ(e)(x) = −1

3. Using (1.11), find the error values for problem 4) of Section 1.7. Check also that
for m = n− k − 1, the last iteration of the algorithm, we have

f (e)(x)ψ(m)(x) − g(m)(x)ψ(e)(x) = −1
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