DISCRETE MATHEMATICS

Math 245

Michael E. O'Sullivan

Practice for the Second Exam

- I. Some proofs. Be organized and clear.
 - a)Let A, B, and C be subsets of a set U. Prove that $(A \cap B) C = (A C) \cap (B C)$. (You may use elements or give an algebraic proof.)
 - b) If A, B, and C are sets such that $A \subseteq B$, and $A \subseteq C$, then $A \subseteq B \cap C$.
 - c) If R and S are symmetric relations, $R \cap S$ is a symmetric relation.
 - d) If R and S are symmetric relations, $R \cup S$ is not necessarily a symmetric relation. (Just give an example.)
- II. Classic proofs:
 - a) Prove that $\sqrt{5}$ is irrational.
 - b) Prove there are an infinite number of primes.
 - c) Prove that the sum of a rational and an irrational number is irrational.
- III. (50 pt.) Let $A = \{a, b, c, d, e, f\}$. Make up your own relation R on A with 5 elements. Answer the following. For a), b), c), you may use a list, a table, or a directed graph to portray the relation.
 - a) Find the smallest relation containing R which is reflexive.
 - b) Find the smallest relation containing R which is symmetric.
 - c) Find the smallest relation containing R which is transitive.
 - d) Let S be the smallest equivalence relation containing R. Give the partition induced by S.
 - e) Let T be the smallest partial order containing R. Draw the Hasse diagram for T.
- IV. (30 pt.) For $n = 2, 3, \ldots, 36$ do the following,
 - a) Draw the Hasse diagrams for D_n .
 - b) Identify the minimal elements of $D_n \setminus \{1\}$.
- V. (30pts.) Consider the equivalence relation S on the set, $\mathbb{Z} \times \mathbb{N}$.

$$(a,b)S(r,s)$$
 provided $as = br$

- a) Prove that S is an equivalence relation.
- b) What is the equivalence class of (3,1)? What is in the equivalence class of (1,3)? What is the equivalence class of a general (a,b)?
- b) Identify a set that has exactly one representative from each equivalence class.
- VI. The modulo n relation on Z:
 - a) Under the the modulo 5 relation, when is $a \in \mathbb{Z}$ related to b?
 - b) Prove that the modulo 5 relation is an equivalence relation
 - c) What are the equivalence classes modulo 5?
- VII. Fuctions:
 - a) Give n example of a function from $A = \{a, b, c, d\}$ to $B = \{x, y, z\}$ which is surjective (onto), but not injective (one-to-one).
 - b) Give an example of a function on A which is neither surjective nor injective.
 - c) Give an example of a function on \mathbb{Z} which is injective but not surjective (and vice-versa).