DISCRETE MATHEMATICS

Math 245
Michael E. O'Sullivan
Suggestions for Preparing for the Final Exam
I. Understand fundamental logic.

- Truth tables for $\wedge, \vee, \Longrightarrow$, xor.
- Know how to negate a statement (Important!).
II. Know the statements of the following theorems:
- Quotient-remainder theorem.
- The unique factorization theorem.
IV. Know the basics of set theory!
- Subset. Intersection, union, set difference, complement.
- Power set, Cartesian product, partition.
- Relation, inverse of a relation, function. Injective (one-to-one), surjective (onto) and bijective functions.
- Reflexive, symmetric, antisymmetric, asymmetric, transitive.
- Equivalence relation, equivalence class.
- Partial order (poset). For posets, maximal, minimal, least, greatest.
V. Know your relations.
- Know how to use tables, graphs and lists of elements to represent a relation.
- Verify or prove that a relation R is reflexive (ditto for reflexive, transitive, equivalence relation, partial order).
- For a relation R on A, be able to find the smallest relation containing R which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).
- Know the standard examples of equivalence relations $(\bmod n, 10.3 .10$ and exercises $10.3 \# 18$, 19, 22, 23).
- Know the standard examples of partially ordered sets: \leq for the integers (or rationals) divides on the integers; $\mathcal{P}(\mathcal{A})$ for a set $A ; D_{n} ;(10.5 \# 16,17,18,19,20)$.
- Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.
VI. Functions as relations.
- Determine when a relation is a function, and if so, when it is injective, surjective, or bijective.
- Find the inverse relation of a function. Is it a function, injective, surjective?
- Give examples of functions satisfying various properties $(7.2 \# 8,9,12,13)$.
VII. Know the basics of recursion and induction!
- State the well-ordering principle.
- State the principle of induction.
- Be able to use summation and product notation.
- Find the first several terms of a sequence given the intial terms and the recurrence formula.
VIII. Know the formulas for the following sums:
- The sum of a geometric sequence.
- The sum of the first n integers.
IX. Know how to prove by induction!
- Use full sentences.
- State the predicate.
- Prove the base step.
- State the assumption for the inductive step.
- Given the initial terms and the recurrence formula for a sequence and given a formula for the nth term as a function of n prove that the latter is correct.
X. Know how to count!
- Poker hands (I will describe the hand, and I may give you a strange deck).
- State the binomial theorem, and use it to find a particular coefficient in a binomial expansion (6.7 \#4- 8).
- Know the 4 ways to choose and the formulas for 3 of them (I won't test order unimportant, repetition allowed).

