DISCRETE MATHEMATICS
 Math 245

Michael E. O'Sullivan
Assignment for Ch 10

Due Wed. 11/24/10

1. Epp 10.2 \#11 (both editions).
2. Epp 10.2 \#44 (both editions).
3. Let $A=\mathcal{P}(\{a, b, c\})$, the set of subsets of $\{a, b, c\}$. Define a relation on A by $X R Y$ when $|X|=|Y|$ (here X and Y are subsets of $\{a, b, c\}$ and $|X|$ is the number of elements in X.)
(a) Prove that R is an equivalence relation (this is straightforward.)
(b) Identify the equivalence classes of R.
4. Consider the integers, \mathbb{Z}, with the $\bmod 7$ equivalence relation. Give a system of representatives.
5. Consider the "punctured plane," that is $\mathbb{R} \times \mathbb{R}-\{(0,0)\}$. Define an equivalence relation R by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ when there is some positive real number a such that $a x_{1}=a x_{2}$ and $a y_{1}=y_{2}$. In other words: $(x, y) R(a x, a y)$ for all positive reals a.
(a) Find all points (x, y) such that $(0,1) R(x, y)$. Find all points (x, y) such that $(1,1) R(x, y)$.
(b) Show that R is an equivalence relation.
(c) Briefly state what the equivalence classes are.
(d) Find a system of representatives: a set with exactly one element from each equivalence class.
6. Construct the Hasse diagram of D_{n} for $n=42$, and $n=100$.
7. For the values of n in the previous problem, find the maximal and minimal elements of $D_{n}-\{1, n\}$.
8. Construct the Hasse diagram for the divides relation on the set $\{2, \ldots, 10\}$. Identify the minimal elements and the maximal elements.
