# DISCRETE MATHEMATICS 

## Math 245

Michael E. O'Sullivan

## Suggestions for preparing for the Second Exam

I. Things you should know about the integers and rational numbers:

- Be able to use (and recognize that you are using) commutativity, associativity, the additive and multiplicative identity, the additive inverse (and, for the rationals, the multiplicative inverse), distributivity.
- Be able to use (and recognize that you are using ) properties of $<$. For example $a<b$ implies $a+c<b+c$.
- Be able to define prime, composite, divides, floor, ceiling.
II. Know the statements of the following theorems and know how to apply them (as in webworks problems):
- Quotient-remainder theorem.
- The unique factorization theorem.
III. Be able to do these computations.
- Use the Euclidean algorithm to find the greatest common divisor of two numbers.
- Convert an integer (base 10) into another base, and convert from any base into base 10.
- Add in any given base. Construct a multiplication table in a given base. Use a multiplication table to find a product of two numbers in any given base.
- Use unique factorization to solve equations involving integers.
IV. Know these standard proofs and proof methods.
- Divisibility results like:
- Transitivity of divides.
- If $a$ divides $b$ and $a$ divides $c$ then $a$ divides $b+c$.
- When $a=b x+c, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)$.
- Proofs by contradiction:
- There exist an infinite number of primes (by contradiction).
$-\sqrt{p}$ is irrational for $p$ a prime (by contradiction).
- The sum of a rational number and an irrational number is irrational (by contradiction).
- Floor and ceiling proofs using the definitions (as in Epp, §3.5).
- Know how to use of a counterexample to disprove a universal statement.
V. Sequences and recursion.
- Be able to use summation and product notation.
- Be able to use recursive formulas.
- Find the first several terms of a sequence given the inital terms and the recurrence formula.
- Find the formula for the $n$th term as a function of $n$ for some simple examples.
VI. Know the formulas for the following sums:
- The sum of a geometric sequence.
- The sum of the first $n$ integers.
VII. Know how to prove by induction!
- Use full sentences.
- State the predicate.
- Prove the base step.
- State the assumption for the inductive step.
- Do the inductive step.

