# DISCRETE MATHEMATICS 

## Math 245

Michael E. O'Sullivan
Suggestions for preparing for the Third Exam
I. Functions and relations. Be able to do the following.

- Define terms!
- Relation, inverse of a relation.
- Function. Injective (one-to-one), surjective (onto) and bijective functions.
- Use a list of elements, an arrow diagram, a table, a graph, or a formula to define a function or relation.
- Determine whether a given relation is a function, or whether a given function is injective or surjective.
- Find the inverse relation of a function. Is it a function, injective, surjective?
- Give examples of functions satisfying various properties (see 7.2 \#9 3rd Ed., 7.3 \#5 2nd Ed.).
- Be able to compute the composition of two functions. See also problems $\S 7.4 \# 16-19$ 3rd Ed., §7.5 \#15-18 2nd Ed.
III. Relations on a set. Be able to do the following.
- Define terms!
- Reflexive, symmetric, transitive.
- Equivalence relation, equivalence class.
- Partial order. Comparable, total order, maximal, minimal, least, greatest.
- Verify or prove that a given relation $R$ is symmetric.
- Ditto for reflexive, transitive, equivalence relation, partial order.
- Ditto for irreflexive, antisymmetric, asymmetric (but I will give you the definition).
- Use arrow diagrams, tables, graphs and lists of elements to represent a relation.
- For a relation $R$ on $A$, be able to find the smallest relation containing $R$ which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).
- Know the standard examples of equivalence relations $(\bmod n, 10.3 .10$ and exercises $10.3 \# 18$, 19, 22, 23 3rd Ed., 10.3 \#15, 16, 19, 20 2nd Ed.).
- Know the standard examples of partially ordered sets: $\leq$ for the integers (or rationals) divides on the integers; $\mathcal{P}(\mathcal{A})$ for a set $A ; D_{n} ;(10.5 \# 16,17,18,19,20,21$ both Eds. $)$.
- Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.

