DISCRETE MATHEMATICS
 Math 245

Michael E. O'Sullivan
Assignments for Ch 3

Due Thursday 03/10/2011

1. It is sometimes easier to prove a statement by proving the contrapositive (which is logically equivalent to the original statement.) For the following statement, (a) Write the statement formally, by using names for the integers and appropriate quantifiers. (b) Write the contrapositive. (c) Prove the contrapositive (it is short!).

If the sum of two integers is less than 50 , then at least one of the integers is less than 25 .
2. Using the Euclidean algorithm, find the gcd of 780 and 268.
3. Exercises with representations of integers.
(a) Convert 361 in base 10 to binary and to octal.
(b) Convert 110110_{2} and 555_{8} to base 10 .
(c) Make a multiplication table for one digit numbers base 8.
(d) Find the product in octal, $36_{8} * 74_{8}$.
4. See Epp 2nd Ed. 3.4 \#20-22 or 3rd Ed. 3.4 \#27-30.

Prove that for any integer $n, n^{3}-n$ is divisible by 3 . (Consider three cases determined by the quotient-remainder theorem.)
5. There is a theorem that says:

If a prime number divides a product then it divides one of the factors.
More explicitly:
For any prime number p and any integers b, c, if $p \mid b c$ then $p \mid b$ or $p \mid c$.
The following statements are NOT true. Give a counterexample to each, and explain your counterexample in a couple of sentences.
(a) Let a, b, c be integers with $a \neq 0$. If $a \mid b c$ then $a \mid b$ or $a \mid c$.
(b) Let p be a prime number and let b, c be integers. If $p \mid(b+c)$ then $p \mid b$ or $p \mid c$.

