DISCRETE MATHEMATICS
 Math 245
 Michael E. O'Sullivan
 Suggestions for Preparing for the Final Exam

I. Understand fundamental logic:

- Truth tables for $\wedge, \vee, \Longrightarrow$, xor.
- Be able to show logical equivalence using a truth table.
- Know some important equivalences (Thm. 1.1.1 and $p \Longrightarrow q \equiv \sim p \vee q$ and $p \Longrightarrow(q \vee r) \equiv(p \wedge \sim q) \Longrightarrow r)$.
- Know how to negate a statement (Important!).
- Pay particular attention to quantifiers, existential (\exists) and universal (\forall).
II. Know the basics of set theory!
- Definitions of subset, intersection, union, set difference, complement.
- Definitions of power set, Cartesian product, partition.
- Be able to prove one set is a subset of another.
III. Know the basics of number theory.
- The definition of divides and divisibility properties.
- Be able to state and use the Quotient-Remainder Theorem.
- Be able to state and use the Unique Factorization Theorem.
- Know the classic proofs by contradiction
$-\sqrt{p}$ is irrational for p prime.
- The sum of a rational number and an irrational number is irrational.
IV. Functions and relations.
- Know the definitions: Relation, inverse of a relation, function. For functions: injective (one-to-one), surjective (onto) and bijective.
- Be able to determine when a relation is a function, and if so, when it is injective, surjective, or bijective.
- Be able to work with lists, tables, arrow diagrams and formulas to define relations.
- Be able to find the inverse of a bijective function (e.g. $f(x)=2 x+7$).
- Give examples of functions satisfying various properties (7.3 \#4-10 (2nd Ed.) 7.2 \#5-14 (3rd Ed.)).
V. Relations on a set.
- Know how to use a table, a list of elements or an arrow diagram (also called a directed graph) to represent a relation on X. (The arrow diagram is different from that for a relation from X to $Y)$.
- Verify or prove that a relation R is reflexive (ditto for symmetric, transitive, antisymmetric, an equivalence relation, or a partial order).
- For a relation R on A, be able to find the smallest relation containing R which is symmetric (ditto for reflexive, transitive, an equivalence relation, a partial order).
- Know the standard examples of equivalence relations $(\bmod n, 10.3 .10$ and exercises $10.3 \# 18,19,22,233$ rd Ed., $10.3 \# 15,16,19,202 n d$ Ed.).
- Know the standard examples of partially ordered sets: \leq for the integers (or rationals) divides on the integers; $\mathcal{P}(\mathcal{A})$ for a set $A ; D_{n} ;(10.5 \# 16,17,18,19,20,21$ both Eds.).
- Draw Hasse diagrams for a poset. Find minimal and maximal elements of a poset.
VI. Know the basics of recursion and induction!
- State the well-ordering principle.
- State the principle of induction.
- Be able to use summation and product notation.
- Find the first several terms of a sequence given the initial terms and the recurrence formula.
- Know the formulas for the following sums:
- The sum of a geometric sequence.
- The sum of the first n integers.
VII. Know how to prove by standard induction! (I won't test strong induction.)
- Use full sentences.
- State the predicate.
- Prove the base step.
- State the assumption for the inductive step.
- Do the inductive step.
VIII. Know how to count!
- Know the inclusion-exclusion formula and be able to apply it and use a Venn diagram to illustrate.
- Know the 4 ways to choose and the formulas for 3 of them (I won't test "order unimportant, repetition allowed").
- Poker hands (I will describe the hand, and I may give you a strange deck or strange hand).

