# DISCRETE MATHEMATICS 

Math 245
Michael E. O'Sullivan

## Assignments for Ch 4

Due Thursday 03/15/2012

1. This is Epp 2nd Ed. 3.6 \#14, 3rd Ed. 3.6 \#26. Consider the statement,

For all integers $a, b, c$, if $a \mid b$ and $a \nmid c$ then $a \nmid(b+c)$.
(a) Choose integers $a, b, c$ illustrating the statement's claim.
(b) Prove the statement using two applications of the logical equivalence $p \rightarrow(q \vee$ $r) \equiv(p \wedge \sim q) \rightarrow r$ and a previous result that we have seen.
(c) Prove by contradiction. Suppose $a, b, c$ satisfy the premises and the negation of the conclusion. Derive a contradiction.
2. We know that the product of two rational numbers is rational. Prove by contradiction that the product of a nonzero rational and an irrational is irrational.
3. Mimic the proof that $\sqrt{2}$ is irrational to prove that $\sqrt{3}$ is irrational.
4. Prove the following result using the definition of floor (See Epp 2nd Ed. and 3rd Ed $3.5 \# 23-24$, do not use \#23 to prove this problem.) Let $x$ be a real number and let $m$ be an integer. If $x$ is not an integer then $\lfloor x\rfloor+\lfloor m-x\rfloor=m-1$.

