PROBLEM SET 9 SUPPLEMENT

Exercises 9.1. Consider $\mathbb{F}_2[x, y]$.

- (a) Identify all the elements of $\mathbb{F}_2[x,y]/\langle x^3,y^2\rangle$. How many are there?
- (b) Find the nilpotents, zero divisors, and units in $\mathbb{F}_2[x, y]/\langle x^3, y^2 \rangle$.
- (c) Identify all the elements of $\mathbb{F}_2[x,y]/\langle x^3y^2\rangle$.
- (d) Find the nilpotents, zero divisors, and units in $\mathbb{F}_2[x,y]/\langle x^3y^2\rangle$.
- (e) Find the maximal ideals in $\mathbb{F}_2[x,y]/\langle x^3y^2\rangle$.

Theorem (4.5.11). Let R be a ring and I and ideal in R.

- I is a maximal ideal if and only if R/I is a field.
- I is a prime ideal if and only if R/I is an integral domain.
- I is a radical ideal if and only if R/I is reduced.

Exercises 9.2. In the notes I prove the forward direction.

- (a) Prove that R/I is reduced (no nilpotents) implies I is radical.
- (b) Prove that R/I is an integral domain implies I is prime.
- (c) Prove that R/I is a field implies I is maximal.

Exercises 9.3. Consider now $\mathbb{Q}[x, y]$.

- (a) Show that $\langle y + x^2 \rangle$ is a prime ideal in $\mathbb{Q}[x, y]$.
- (b) Show that for any $a \in \mathbb{Q}$, $\langle x a, y a^2 \rangle$ is a maximal ideal containing $\langle y x^2 \rangle$.
- (c) Show that $\langle x^2 + 1, y + 1 \rangle$ is a maximal ideal containing $\langle y x^2 \rangle$. Can you identify other such ideals?