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Chapter 1

Getting Started

1.1 The Integers

What are the integers? This is not a simple question, if you want to be rigorous
about defining the integers. Formally doing so would distract from developing our
core topics, so we will take as our foundation the following. The ring of integers
Z is

• the set of natural numbers N = {1, 2, 3, . . . } along with the number 0 and
the additive inverses of the natural numbers {�1,�2,�3. . . . };

• the operation of addition (and the properties of addition we know from ele-
mentary school);

• the operation of multiplication (and the properties of multiplication we know
from elementary school);

• the ordering defined by positive numbers being greater than 0 and a < b if
and only if b� a > 0;

• the well-ordering principle—any non-empty subset of the natural numbers
has a least element.

We may think of subtraction as either a � b = a + (�b) or equivalently (after
some argument) a� b is the the number s (which we should show is unique) such
that s+ b = a. Division will be dealt with below. While the integers are familiar
from elementary school, the well-ordering principle is not (unless you attended
a very special elementary school!). It is actually key to the formal definition of
the integers (see the Peano axioms and [Men15]) and to mathematical induction
stripped to its essentials:
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The Principle of Mathematical Induction
Let K be a subset of N satisfying these two properties

• 1 2 K;

• whenever a 2 K it is also true that a+ 1 2 K.

Then K = N.

Beyond the basic properties above there are five main results for the integers
that are fundamental. For the purposes of easy reference I will call them the
Quotient-Remainder (QR) Theorem, the Greatest Common Divisor (GCD) Theo-
rem, the Euclidean Algorithm, the Prime-Irreducible Theorem (Euclid’s lemma),
and the Unique Factorization Theorem (the Fundamental Theorem of Arithmetic).
The Quotient-Remainder Theorem and Unique Factorization will be familiar; the
other results, perhaps less so. The proofs here will be concise, and just a few
exercises are included because this material is treated very well in other resources
[Hun12].

In addition to these key results about the integers we introduce modular arith-
metic in this section. This is a new algebraic structure know as the integers modulo
n (for some n > 1), which we write Z/n.

The Quotient-Remainder Theorem and Divisibility

We have implicitly used the Quotient-Remainder Theorem since elementary school,
when we computed (the unique!) quotient and remainder of two integers. The
proof relies on something sophisticated: the well-ordering principle.

Theorem 1.1.1 (Quotient-Remainder). Let a and b be integers with b 6= 0. There

exist unique integers q, r such that

(1) a = bq + r, and

(2) 0  r < |b|.

If the remainder of a divided by b is 0, we say b divides a and a is a multiple
of b.

Proof. We prove this for b > 0 and leave the case b < 0 as an exercise. Consider
the set S = {a� bc : c 2 Z} \ N�0. As a nonempty subset of the nonnegative
integers, it has a least element. Let r be the minimal element of S, and let q be
the integer such that r = a � bq. If r � b we would have a contradiction because
then r � b � 0 and r � b = a� b(q + 1) would put r � b 2 S. Thus we must have
0  r < b. This establishes existence of q, r as claimed.
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To prove uniqueness, suppose another r
0
, q

0 satisfy (1) and (2) and suppose
without loss of generality that r � r

0. (We want that r
0 = r and q

0 = q.) Then
a = bq + r = bq

0 + r
0 so r � r

0 = b(q0 � q). Now b > r � r
0
� 0 but b(q0 � q)

is a multiple of b. The only multiple of b in the interval [0, b) is 0, so the only
possibility is r � r

0 = 0 = b(q � q)0, and therefore r = r
0 and q = q

0.

It is fairly common in programming languages (in particular in Python and
Sage) to write the integer quotient as a//b and the remainder as a%b. We will use
this in the exercises and the discussion of the Euclidean algorithm in this chapter.

Exercises 1.1.2. More on the Quotient-Remainder Theorem.

(a) Prove the QR Theorem for negative integers: Only minor changes are needed.

(b) For b > 0, show that a//(�b) = �(a//b) and a%(�b) = a%b. [Don’t let the
notation make this hard!]

(c) Prove this alternative version of the QR Theorem. Let a and b be integers
with b 6= 0. There exist unique integers q, r such that

(1) a = bq + r, and

(2) |b|/2 < r  |b|/2

[There are two approaches: use the existing QR Theorem to prove the alter-
native, or prove it from scratch by redefining S and modifying the proof of
the QR Theorem.]

Let a and b be integers, at least one of which is not 0. The common divisors
of a and b are the integers that divide both a and b. The greatest common
divisor (gcd) is the largest positive integer dividing both a and b. The common
multiples of a and b are the integers that are multiples of both a and b. The
least common multiple (lcm) is the smallest positive integer that is a multiple
of both a and b.

A linear combination of a and b is an integer that can be expressed as au+bv

for some integers u and v.

Exercises 1.1.3. Properties of divisibility.

(a) Show that if b divides a and d divides b that d also divides a.

(b) Show that if d divides a and d divides b that d also divides any linear com-
bination of a and b. (In particular, this proves Lemma 1.1.5 below.)

The following result is an important property of the integers, and not an obvious
one. It is an important tool in the study of groups. We will see echos of this result
and the proof when we study ideals in rings (Section 4.4.
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Theorem 1.1.4 (GCD). Let a and b be integers, at least one of them nonzero.

The gcd of a and b is the smallest positive linear combination of a and b. In

particular, gcd(a, b) = au+ bv for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of

gcd(a, b).

Proof. Let S = {ar + bs : r, s 2 Z} be the set of all linear combinations of a and b.
Let d be the smallest positive element of S and let u, v be such that d = au+ bv.
I claim d divides a and b.

By the QR Theorem applied to a and d, a = dq + r for some integer q and
nonnegative integer r < d. Then

r = a� dq = a� (au+ bv)q = a(1� uq)� bvq

This shows that r is also in S. But, d is the smallest positive element of S, and
0  r < d. This shows r = 0, so d divides a.

Similarly, one shows d divides b, so d is a common divisor of a and b. To show
it is the greatest common divisor, let c be any other common divisor of a and b.
Then c divides au+ bv = d (by divisibility properties). Since d is positive c  d.

Since d divides a and b the elements of S are all divisible by d by Exercise 1.1.3.
On the other hand any multiple of d is a linear combination of a and b since d is.
This establishes the last sentence of the theorem.

We say two integers are coprime (or relatively prime) when their gcd is 1.
Given a and b, how do we find their gcd? The answer (for arbitrary large

integers) is not to factor each and look for common factors. Rather, use the
Euclidean algorithm.

Let’s assume a � b � 0. Recall that a//b is the integer quotient and a%b the
remainder as determined by the QR Theorem. Set r�1 = a and r0 = b, and define
inductively (while rk 6= 0)

qk = rk�1//rk

rk+1 = rk�1%rk, so that

rk�1 = qkrk + rk+1.
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Rearranging these equalites by solving for rk+1, we get a sequence

r1 = r�1 � r0q0 = a� bq0

r2 = r0 � r1q1

r3 = r1 � r2q2

...

rk+1 = rk�1 � qkrk

...

rn+1 = rn�1 � qnrn = 0.

The rk are a strictly decreasing sequence of nonnegative integers, so the process
must terminate: as we showed above for some n, rn+1 = 0 so rn divides rn�1. Now
we make use of the following lemma, proved using basic divisibility properties (see
Exercise 1.1.3).

Lemma 1.1.5. For integers a, b, c, s such that a = bs + c, we have gcd(a, b) =
gcd(b, c).

Let’s apply this to the sequence rk, letting n be minimal such that rn+1 = 0.
We have (since rn+1 = 0)

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, rn+1) = gcd(rn, 0) = rn

This argument shows that the Euclidean algorithm produces the gcd of a and b.
In the following Sage code we only keep two of the remainders at any time, not
the whole sequence: after the kth pass through the while loop, r in the algorithm
is rk�1 and s is rk.

def euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

r = a

s = b

while s != 0:

rem = r %s

r = s

s = rem

return r
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There is a heftier Euclidean algorithm—often called the Extended Euclidean
algorithm—which produces two integers u, v such that au + bv = gcd(a, b). I like
the following matrix version of the algorithm. Let

Qk =


�qk 1
1 0

�
and Rk =


rk

rk�1

�

where the sequence rk and qk are the same as used above in the Euclidean algo-
rithm. Verify that Rk+1 = QkRk. Consequently,

Rn+1 =


0
rn

�
= QnQn�1 · · ·Q0R0 (1.1)

where R0 =


b

a

�
. Let M =


M1,1 M1,2

M2,1 M2,2

�
= QnQn�1 · · ·Q0. Then, after the

algorithm terminates, we have M2,1b+M2,2a = rn = gcd(a, b).
Here is Sage code for the extended Euclidean algorithm. (Note that Sage

indexes rows and columns of matrices starting from 0 not 1.) Initially M is the

2⇥2 identity matrix and R is the matrix


a

b

�
. The algorithm iteratively computes

q (which, at the kth iteration is qk�1), the quotient of M1,0 by M0,0. It forms the

matrix Q =


�q 1
1 0

�
and multiplies both R and M by Q. The result after iteration

k (for k = 1, . . . ) is that R is Rk and M is the product Qk�1Qk�2 · · ·Q1Q0 in (1.1).

def ext_euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

M = matrix.identity(2)

R = matrix(2,1, [b,a])

while R[0,0] != 0:

q = R[1,0]//R[0,0]

Q = matrix(2,2,[ -q , 1, 1, 0])

M = Q * M

R = Q * R

return M

We have proven that the Euclidean algorithm terminates with the greatest
common divisor of the input integers. A bit closer analysis of the algorithm reveals
a connection with the Fibonacci numbers and allows one to bound the number of
steps for the Euclidean algorithm. See [Ros11] for details.
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Theorem 1.1.6 (Euclidean Algorithm). Let a, b be integers with b 6= 0. The

Euclidean Algorithm outputs gcd(a, b) in at most 1 + log2 b/ log↵ steps, where

↵ = (1 +
p
5)/2 is the golden ratio. The Extended Euclidean Algorithm outputs

integers u, v with |u| < b and |v| < a such that au+ bv = gcd(a, b).

The greatest common divisor of a finite set of integers (that contains a nonzero
integer) is simply the largest integer that divides each element of the set. A simple
induction argument shows that the set of common divisors of {a1, . . . , an} is equal
to the set of common divisors of {gcd(a1, . . . , an�1), an}. To compute the greatest
common divisor of this set e�ciently, one computes iteratively gcd(a1, . . . , ak) =
gcd(gcd(a1, . . . , ak�1), ak). (There are more e�cient algorithms, but understand-
ing this approach is su�cient here.)

Exercises 1.1.7. Use the Euclidean algorithm to express the greatest common di-
visor as a linear combination of the given integers.

(a) 89, 24

(b) 24, 40, 30

Primes, Irreducibles, and Unique Factorization

The next main result is Fundamental Theorem of Arithmetic, which says (roughly)
that every nonzero integer has a unique factorization as a product of primes.
We will now define what it means for an integer to be prime, but it will not
be the school definition. We also define the term irreducible, which is what we
customarily use for primality. The definitions given here are the accepted ones
in more general contexts. Fortunately, the following theorem (Euclid’s Lemma),
which I will refer to as the Prime-Irreducible Theorem shows that for integers the
notions are equivalent.

Definition 1.1.8. Let r be an integer with |r| > 1. We say r is irreducible when
r = ab implies that either a = ±1 or b = ±1 (and the other is ±r). We say r is
prime when r|ab implies r|a or r|b.

Theorem 1.1.9 (Prime-Irreducible). An integer is irreducible if and only if it is

prime.

Proof. We prove this for positive integers; minor adjustments can be made for a
negative number.

Let p > 1 be an irreducible; let us show it is prime. Suppose that p|ab for
some integers a and b. We need to show p|a or p|b. If p divides a we are done, so
suppose it does not divide a. Since p is irreducible, its only positive divisors are 1
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and p, so the GCD of a and p is 1. By the GCD Theorem, there are integers u, v
such that

1 = au+ pv

Multiplying by b

b = abu+ pbv

Since p|ab we have that p divides the right hand side, thus p divides b.
Suppose now that p > 1 is prime, we will show it is irreducible. Let p = ab be

a factorization of p. We must show one of a or b is ±1. Since p is prime and it
divides (in fact equals) the product ab it must divide one of the factors. Without
loss of generality, say p|a, so a = px for some integer x. Then p = ab = pxb, so
p(1� xb) = 0. This shows that 1� xb = 0, so x = b = ±1.

The previous theorem is the key ingredient to establishing unique factorization.

Theorem 1.1.10 (Unique Factorization). Let a be a positive integer. There is a

nonnegative integer t, there are positive prime numbers p1 < p2 < · · · < pt, and

there are positive integers e1, . . . , et, such that

a = p
e1
1
· · · p

et
t

Each of t, pi, ei and u is uniquely determined.

Proof. TBD

Modular Arithmetic

Our discussion of the integers culminates with a quick summary of arithmetic
modulo an integer n. This is a model for the construction of quotient groups and
quotient rings that will be taken up later.

Definition 1.1.11. Let n be a nonzero integer. For integers a and b we say a is
congruent modulo n to b when n divides a� b.

Theorem 1.1.12. Congruence modulo n is an eqivalence relation. Furthermore,

the set {0, 1, . . . , n � 1} is a system of representatives for congruence modulo n

in the sense that each integer a is congruent modulo n to exactly one element of

{0, 1, . . . , n� 1}.

Proof. The relation of being congruent modulo n is clearly reflexive, since for any
a 2 Z, n|(a � a). It is symmetric because if n|(a � b) then also n|(b � a). It is
transitive because if a is congruent to b and b is congruent to c modulo n then

SDSU Fall 2023 August 17, 202310



Math 620: Groups, Rings, and Fields Michael E. O’Sullivan

n|(a�b) and n|(b�c). This implies that n divides the sum (a�b)+(b�c) = a�c,
so a is congruent to c modulo n.

From the Quotient-Remainder Theorem, an integer a is congruent to its re-
mainder when divided by n, since there is an integer q such that a = nq+ r. Theis
remainder is one of the elements of {0, 1, . . . , n� 1}. No two of these numbers
di↵er by a multiple of n so they are distinct modulo n.

The integers n and �n give the same equivalence relation, so we always use
positive integers for the modulus. It is common to write [a]n for the congruence
class of a modulo n, whenever we need to be careful to distinguish between the
integer a and the congruence class, or when we have more than one modulus to
worry about. If there is a unique modulus the subscript n may be omitted. If it is
clear from context that we are working modulo n, we may simply write a.

Finally we have:

Theorem 1.1.13 (Arithmetic modulo n). Suppose that a ⌘ b mod n and r ⌘

s mod n. Then a + r ⌘ b + s mod n and ar ⌘ bs mod n. Thus, arithmetic on

congruence classes modulo n is well-defined as follows.

• [a] + [r] = [a+ r]

• [a] ⇤ [r] = [ar]

Proof. Suppose that a ⌘ b mod n and r ⌘ s mod n. We have a = b+ jn for some
integer j and r = s + kn for some integer k. Then a + r = b + s + (j + k)n so
a+ r ⌘ b+ s mod n. We also have ar = bs+ (ak + bj + jkn)n so ar ⌘ bs mod n.

This shows that no matter what element of an congruence class is used to
represent the class, arithmetic operations modulo n will give the same result.

We will write Z/n for the set of congruence classes modulo n, with the opera-
tions + and ⇤. (It is common to use Zn, but Z/n is consistent with notation we
will use later.) When there is no chance of ambiguity, we write the congruence
classes as 0, 1, . . . , n � 1 (without the brackets and using the least nonnegative
representatives for each class). But, sometimes it is handy to be a bit flexible. For
example it is good to remember that n� b is equal to �b in Z/n. So (in Z/n)

b(n� 1) = (�1)b = n� b.

Exercises 1.1.14.

(a) Let p be a prime number. Let [a] 2 Z/p with [a] 6= [0] (so a is not divisible
by p). Use the GCD Theorem 1.1.4 to show there is some r 2 Z/p such that
[a][r] = [1].Consequently, each nonzero element of Z/p has a multiplicative
inverse.
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(b) Extend this result, partially, to Z/n for composite n. If [a] 2 Z/n is such
that the integer a is coprime to n, then there is some [r] 2 Z/n such that
[a][r] = [1].

(c) Use the Quotient-Remainder Theorem from Exercises 1.1.2 to show alterna-
tive sets of representatives for the integers modulo n are:

�
n� 1

2
,�

n� 3

2
, . . . ,

n� 3

2
,
n� 1

2
for n odd, and,

�
n� 2

2
,�

n� 4

2
, . . . ,

n� 4

2
,
n� 2

2
,
n

2
for n even.
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1.2 Groups, Rings, and Fields

Let us now introduce our three objects of study: groups, rings, and fields. This
section will discuss some familiar number systems in the context of groups, rings,
and fields. We include also some perspective on the history of the number systems
as well as their appearance in our system of education.

Definition 1.2.1. A binary operation on a set S is a function from S ⇥ S to
S. A unary operation on S is a function from S to S. An “operation” on S is
usually assumed to be binary if not stated otherwise1.

A binary operation ⇤ on S is associative when (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c). It is
commutative when a⇤ b = b⇤a. It has an identity element when there is some
element e 2 S such that a ⇤ e = e ⇤ a = a for all a 2 S.

A group has one binary operation, generally denoted ⇤, while rings and fields
have two binary operations, generally denoted + and ⇤.

Definition 1.2.2. A group is a set G with a binary operation ⇤ and a unary
operation, denoted a 7�! a

�1, satisfying the following properties.

(1) Associativity of ⇤.

(2) Identity for ⇤: There is an element, generally denoted e, such that e ⇤ a =
a = a ⇤ e for all a 2 G.

(3) Inverses for ⇤: For each a 2 G the unary operation a 7�! a
�1 gives the

inverse for a. That is, a ⇤ a
�1 = e = a

�1
⇤ a.

A group which also satisfies a ⇤ b = b ⇤ a is called commutative or abelian (after
the mathematician Abel).

Definition 1.2.3. A ring is a set R, with two operations + and ⇤ that satisfy the
following properties.

(1) Associativity for both + and ⇤.

(2) Commutativity for both + and ⇤.

(3) Identity elements for both + and ⇤. There is some element in R, that we
call 0, such that a+ 0 = a and there is an element, that we call 1, such that
a ⇤ 1 = a.

1
One can define ternary (S ⇥ S ⇥ S �! S) and, more generally, n-ary operations, but we will

have no use for these.
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(4) Inverses for +. For each a 2 R there is some other element, which we write
�a, such that a+ (�a) = 0.

(5) Distributivity of ⇤ over +. That is, a ⇤ (b+ c) = a ⇤ b+ a ⇤ c.

A field is a ring with one additional property,

(6) Inverses for ⇤. For each nonzero a 2 R there is some other element, that we
write a

�1, such that a ⇤ a
�1 = 1.

Comparing these definitions, one sees that a ring R under the operation +
is an abelian (commutative) group with identity element 0 and additive inverse
operation a 7�! �a. Under the operation of multiplication, ⇤, a ring may lack the
property of inversion. A field F is an abelian group under + and the set of nonzero
elements, F ⇤ = F \ {0}, is an abelian group under ⇤. The interaction between the
two operations of + and ⇤ for both rings and fields is given by the distributive
property.

Now to the question: what examples do we have of groups, rings, and fields?

Familiar Rings and Fields

The first number system that a child learns in school is the natural numbers
N = {1, 2, 3, 4, . . . }, and eventually this is expanded to the integers by including 0
and the additive inverse of each positive integer. The integers, denoted Z, are an
abelian group under addition. Once the operation of multiplication as repeated
addition is introduced, we have the first example of a ring. The integers in fact
form the prototypical ring, as we shall see in Theorem 4.2.11.

Students in elementary school—the lucky ones—may also learn “clock arith-
metic” in which addition is done on a clock, so 8:00 plus 7 hours is 3:00. This is
essentially modular arithmetic with modulus 12 (although we usually use repre-
sentatives 1:00, 2:00, . . . , 12:00 rather than using 0:00, 1:00, . . . , 11:00). We saw in
Section 1.1 that multiplication is also well defined modulo n, and one can check
that the properties of a ring are satisfied. We will denote this number system Z/n
(although Zn is also commonly used).

The next step in mathematics education is to expand this integer number sys-
tem. The integers do not form a field since the only numbers with a multiplicative
inverse in Z are ±1. There is a complicated process that enlarges the set of integers
by adding fractions to create the rationals, Q. I say the process is complicated
because lots of people have trouble understanding fractions well, and a key part
of the problem is that a given number has an infinite number of di↵erent names:
1/2 = 2/4 = 3/6 = · · · . The process of forming fractions can be generalized to
other rings, but it has delicate and subtle steps involving equivalence relations.

SDSU Fall 2023 August 17, 202314



Math 620: Groups, Rings, and Fields Michael E. O’Sullivan

When you see the construction in Section 4.6 you may appreciate that these sub-
tleties are closely tied to the di�culties people have with fractions.

There are two other fields that are introduced in secondary school education,
although they are challenging to understand fully: the real numbers R, and the
complex numbers C. Formally defining the real numbers is a sophisticated process,
but treating R as the set of all decimal numbers (including infinite non-repeating
ones) and focusing on the number line is a way to work with them e↵ectively
enough to do most college level mathematics. We won’t have much need for the
real numbers, but the relationship between the reals and the complex numbers is
something that is key to studying fields in general. A complex number is of the form
a+bi in which a, b 2 R and i is the square root of�1. Addition is “componentwise,”
(a+ bi)+ (c+ di) = (a+ c)+ (b+ d)i, and the additive inverse of a+ bi is �a� bi.
Multiplication is based on i

2 = �1: (a+ bi) ⇤ (c+ di) = (ac� bd)+ (ad+ bc)i. One
can check that (a� bi)/(a2 + b

2) is the multiplicative inverse of a+ bi. With these
operations, C is a field.

In the above discussion, there was actually no need to use real numbers for
a, b, c, d. We could have restricted them to be rational numbers and the statements
about addition, multiplication and inverses would still hold true. Thus we can
introduce a field derived from Q that includes i and uses the rules above for
addition, multiplication, and the inverses for each. We call this field the Gaussian
rationals Q(i).

There is one other field that is accessible to those who have learned “clock
arithmetic.” If our clock had a prime number p of positions, we would get Z/p,
in which every nonzero element has a multiplicative inverse, as was shown in
Exercise 1.1.14. When we focus on this modular ring as a field we will write it as
Fp, instead of Z/p. Thus we have our slate of elementary fields, Q, Q(i) and Fp,
supplemented if we want by R and C.

Each of these fields is of course a ring. Our collection of rings that are not fields
includes Z and Z/n for n not a prime. We may supplement it by the Gaussian
integers

Z[i] = {a+ bi : a, b 2 Z}

It is routine to check that this is a ring. Notice that there are 4 elements that have
multiplicative inverses, ±1,±i.

All of our rings are groups under addition and we can study them as groups
by “forgetting” the multiplicative structure (“forget” is actually a term used by
mathematicians in this context!) We also obtain a few other examples by looking
at the multiplicative group of a field. These are the nonzero rationals, denoted
Q⇤, and the nonzero elements of Q(i), and the nonzero elements of Fp, denoted F⇤

p

(and similarly for R and C).
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Figure 1.1: The Pentagon

But what about a group that doesn’t involve ignoring one of the operations on
a ring? In particular, so far, we have no examples of groups in which the operation
is not commutative.

The Dihedral Groups, Dn

Group theory actually arose from the study of transformations that preserved
structure in other mathematical areas. The symmetry of physical objects is per-
haps the easiest entry point.

Consider a regular pentagon, as in Figure 1.1. Imagine a table with a pentagon
carved into it and a clear pentagon that fits neatly into the enclosure. Enumerate
the “base points” on the table and the vertices of the pentagon as shown.

Rotation counter-clockwise about the center by 72� takes the pentagon to itself.
Only the enumeration of the vertices would indicate that a change occured. Calling
this rotation r, we can see there are 5 rotational symmetries, which are rotation
by 72�, 144�, 216�, 288� and 360�. The latter has the same result as not moving
the pentagon at all. This set of rotations is a group where the operation is just
doing one rotation followed by another. Thinking of rotation as a function, we are
composing functions. We may write these rotations as r, r2, r3, r4 and r

5; the latter
having the same e↵ect as not moving pentagon at all, so r

5 = r
0 is the identity

element. It should be clear that r
i
⇤ r

j = r
i+j . This group has 5 elements and

“looks a lot like” Z/5 under addition. (It is isomorphic to Z/5, see Section 2.2.)
There is another type of symmetry indicated by the dashed line. For each

vertex of the pentagon 0, . . . , 4 there is a line through that vertex and the midpoint
of the opposite side that is an axis of symmetry for reflection. Let ti be the
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reflection across the line at vertex i. We now have 10 symmetries of the pentagon:
the identity, 4 non-trivial rotations, and 5 reflections. I claim these are the only
symmetries. There are 5 possible places to put vertex 1; but then vertex 2 must be
one notch away, either clockwise or counterclockwise. The positions of the other
vertices are then determined by the rigidity of the pentagon. So there are only
10 possibilities. Notice also that after a rotation, the ordering of the pentagon
vertices increases clockwise, but after a reflection the numbers of the pentagon
vertices increase counterclockwise (and the numbers on the pentagon would be
reversed as in a mirror).

Now let’s consider the group operation: what happens when we follow one
symmetry by another? First, there are some ambiguities to clear up, so we adopt
the following conventions:

• The rotation r is rotation of the vertex i to the position of vertex i � 1,
so it is counter-clockwise when the enumeration on the pentagon increases
clockwise and clockwise when the enumeration on the pentagon increases
counter-clockwise (as it is after a reflection).

• A reflection ti is reflection across the line through the ith vertex of the
pentagon, not the label i on the table.

• The product rti means reflect then rotate as is customary using functional
notation; we apply the function on the right first.

Figure 1.2 shows the two computations, t0r = t2 and rt0 = t3. These are
unequal, so these computations show that we have our first example of a nonabelian
group. It is called the dihedral group of order 5, and written D5.

Definition 1.2.4. For n � 3, the dihedral group of order n, written Dn, is
the group of symmetries of a regular n-gon. In addition to the identity there
are n � 1 rotations and n reflections. The group operation is composition of the
transformations.

One can verify, in a similar manner to that above, that Dn is nonabelian for
all n.

We can consider each of the symmetries of the pentagon as a function on Z/5
that assigns to the base point a on the table the index of the pentagon vertex
at position a after applying the symmetry. So r(a) = a + 1, and r

i(a) = a + i

(computing modulo 5). The following exercise develops this example in more
detail.

Exercises 1.2.5. Continuing with the D5 example above, the goal of this problem
is to find formulas for the product of two arbitrary elements of D5. We will use
arithmetic in Z/5 with the system of representatives 0, 1, 2, 3, 4.
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(a) After rotation r.
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(b) After reflection t0

4

3

21

0

0

1

23

4

(c) After t0r = t2.
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(d) After rt0 = t3

Figure 1.2: The pentagon after various transformations
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(a) Observe that the reflection ti applied to the original position of the pentagon
(in Figure 1.1) switches i+1 with i�1 and i+2 with i�2 where computations
are modulo 5. Show that when ti is applied to the original position of
the pentagon the vertex at base point a is 2i � a. We can write this as
ti(a) = 2i� a.

(b) Show that rti = ti+3 by arguing that rti is a reflection and that, applied to
the pentagon in the original position, it takes i+ 3 to itself.

(c) Find a formula for r
j
ti; that is, give a function of Z/5 [Hint: linear] for

r
j
ti(a). Do the same for tirj .

(d) Explain why the product of two reflections is a rotation, and find a formula
for titj(a).

The Symmetric Groups, Sn

Recall that a function from one set to another is a bijection when it is both injective
(one-to-one) and surjective (onto). If f : A �! B is a bijection, then there is a well-
defined inverse function, f�1, since each element of B has exactly one preimage. If
f : A �! A is a bijection from A to itself then we say f permutes the elements of
A; it rearranges them in a sense. We are particularly interested in the case when
A is a finite set, even more specifically the set {1, 2, 3, . . . , n}. In this case it is
convenient to write a permutation as a table with the columns i, f(i). Here are
two examples (it is common to use Greek letters to denote permutations).

� =

✓
1 2 3
1 3 2

◆
⇡ =

✓
1 2 3
2 3 1

◆

Here �(1) = 1, �(2) = 3 and �(3) = 2.
This tabular format makes it evident that there are n! permutations of a set

with n elements: There are n choices for the image of 1, call it a1 2 {1, . . . , n},
then there are n�1 possible images for 2, since it must be in {1, . . . , n}\{a1} and
so on. The table would then be

✓
1 2 3 . . . n

a1 a2 a3 . . . an

◆

The tabular form indicates the sense in which a permutation is a rearrangement,
with a1 now being in the first position, a2 in the second, and so on.

Since the composition of two bijections from A to itself is itself a bijection from
A to itself, composition is an operation on the set of permutations. The inverse of
a permutation is also a permutation. Thus we can make the following definition.
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Definition 1.2.6. Let n be a positive integer. The set of all permutations of
{1, 2, 3, . . . , n} along with composition and the unary operation that takes a per-
mutation to its inverse function is called the symmetric group on {1, . . . , n} and
is denoted Sn. We will write composition of permutations using � when empha-
sizing that permutations are functions, but generally we use ⇤, which is the usual
notation for a product in groups.

For n = 1 the symmetric group has just 1 element, and for n = 2 it has two.
The group S3 has 6 elements. Three of these elements fix exactly one element, as
� does, and are called transpositions. The other two are ⇡ and ⇡�1 = ⇡ �⇡. These
are called 3-cycles. The symmetric groups Sn for n � 3 are nonabelian. One can
compute ⇡ � � and � � ⇡ and see that they are unequal (applying the right hand
function first is our convention).

⇡ � � =

✓
1 2 3
2 1 3

◆
� � ⇡ =

✓
1 2 3
3 2 1

◆

The symmetric groups will be discussed in detail in Section 2.4.
An astute reader has perhaps noticed that the discussion of D5 yielded a per-

mutation of {0, 1, 2, 3, 4} for each element of D5. Allowing ourselves to let S5 be
the permutation group of {0, 1, . . . , 4} for the moment, we have essentially given
a function of D5 into S5. Using a bit of Exercise 1.2.5 (and computing in Z/5) we
have;

r
j
7�!

✓
0 1 2 3 4
j 1 + j 2 + j 3 + j 4 + j

◆

ti 7�!

✓
0 1 2 3 4
2i 2i� 1 2i� 2 2i� 3 2i� 4

◆
.

One can check that composition of the linear functions from Exercise 1.2.5 agree
with the composition of the permutations; we are just composing functions.

In the terminology of the next chapter, we have given a homomorphism (Sec-
tion 2.2) from D5 to S5 and the image is a subgroup of S5 (Section 2.1).

Symmetry of Other Objects

The aesthetic appeal of symmetrical objects seems to be universal in human cul-
ture. The following images, some purely geometric, and some from artwork of
various civilizations, show how rich the notion of symmetry can be. How does one
describe the symmetry group of each of these objects? How does one understand
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the structure of these groups? These are questions that I hope will motivate the
next two chapters.

NEED SOME IMAGES: CUBE, CRYSTAL, FRIEZE DIAGRAMS, TILINGS,
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1.3 The Univariate Polynomial Ring over a Field

Let F be a field, in particular, we may consider F to be Q, Fp, or the real num-
bers. By F [x] we mean the polynomial ring in the indeterminate x. The key fact
about polynomial rings is that all the theorems we discussed for integers in Sec-
tion 1.1 also hold—with appropriate modifications—for polynomial rings over F .
These are the Quotient-Remainder (QR) Theorem, the Greatest Common Divisor
(GCD) Theorem, the Euclidean Algorithm, the Prime-Irreducible Theorem, and
the Unique Factorization Theorem. This close relationship between Z and F [x] is
such an important theme in algebra and number theory that I want to lay out the
fundamentals in detail in this section, which parallels substantially Section 1.1.

We can think of the polynomial ring as

• a vector space over F with an infinite basis 1, x, x2, . . . , and componentwise
addition;

• a multiplicative structure defined by x
i
⇤ x

j = x
i+j and the properties of

commutativity, associativity and distributivity of multiplication over addi-
tion.

The result is thus a ring.
Sometimes it is useful to write a polynomial b(x) 2 F [x] as a sum b(x) =P

1

i=0
bix

i with the understanding that only a finite number of the bi are nonzero.
When all of the bi = 0 we get the zero polynomial. Suppose b(x) 6= 0 and let
� be the largest integer such that b� 6= 0. We call � the degree of b(x); b�x� is
the leading term of b(x); x� is the leading monomial of b(x); and b� is the
leading coe�cient of b(x). If b� = 1 we say b(x) is monic. When � = 0 we say
b(x) is a constant polynomial. The zero polynomial is also considered a constant
polynomial and the degree is sometimes defined to be �1.

The product of a polynomial a(x) of degree � and b(x) of degree � has degree
� + �. Rules for divisibility of polynomials are similar to those for the integers.
In particular if a(x) divides b(x) and b(x) divides c(x) then a(x) divides c(x).
Furthermore if d(x) divides both a(x) and b(x) then it divides their sum (and also
any multiple of either a(x) or b(x)).

The Quotient-Remainder Theorem and Divisibility

The following lemma simplifies the proof of the Quotient-Remainder Theorem. It
is worth remarking that we are using the properties of a field when we divide by
b� .
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Lemma 1.3.1 (Division). Let a(x) and b(x) be in F [x] with degrees � and �

respectively and � > �. Then the degree of a(x)� a�

b�
x
���

b(x) is less than �.

Proof. This is a straightforward computation.

a(x)�
a�

b�
x
���

b(x)

= a�x
� + a��1x

��1 + · · ·+ a1x+ a0

�
a�

b�
x
���

⇣
b�x

� + b��1x
��1 + · · ·+ b1x+ b0

⌘

= a�x
� + a��1x

��1 + · · ·+ a1x+ a0

�

⇣
a�x

� +
a�b��1

b�
x
��1 + · · ·+

a�b1

b�
x
���+1 +

a�b0

b�
x
���

⌘

=
⇣
a��1 �

a�b��1

b�

⌘
x
��1 +

⇣
a��2 �

a�b��2

b�

⌘
x
��2 + · · ·

The leading terms of a(x) and a�

b�
x
���

b(x) cancel and the result has degree less
than �.

Theorem 1.3.2 (Quotient-Remainder). Let a(x) and b(x) be elements of F [x]
with b(x) 6= 0. There exist unique q(x), r(x) such that

(1) a(x) = b(x)q(x) + r(x), and

(2) deg r(x) < deg b(x).

Proof. Consider the set S = {a(x)� b(x)c(x) : c(x) 2 F [x]}. The set of degrees
of the elements of S is a nonempty subset of the nonnegative integers, so it has
a least element, �. There is some polynomial of degree � in S, call it r(x), and
suppose r(x) = a(x)� b(x)q(x). I claim deg(r(x)) < deg(b(x)). Suppose not. Let
� = deg(r(x)) and � = deg(b(x)). Apply Lemma 1.3.1 to r(x) and b(x) to get

r(x)�
r�

b�
x
���

b(x) = a(x)� b(x)q(x)�
r�

b�
x
���

b(x)

= a(x)� b(x)(q(x) +
r�

b�
x
���).

This is also in S and by Lemma 1.3.1 has lower degree than r(x). This contradicts
our choice of � as the lowest degree of elements in S. Consequently, we must have
deg(r(x)) < deg(b(x)). This establishes existence of q(x) and r(x) as claimed.

To prove uniqueness, suppose another r0(x), q0(x) satisfy (1) and (2). (We want
to show they are equal to r(x) and q(x)!) Then

a(x) = b(x)q(x) + r(x) = b(x)q0(x) + r
0(x) so

r(x)� r
0(x) = b(x)

�
q
0(x)� q(x)

�
.
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The degree on the left hand side is strictly less than the degree of b(x). Since the
right hand side is a multiple of b(x), it must in fact be 0. Thus r(x) = r

0(x) and
q(x) = q

0(x).

The greatest common divisor of two integers was easy to define since the in-
tegers are well ordered. It is not obvious that, among the common divisors of
a(x), b(x) 2 F [x], there is just one monic divisor of maximal degree. The following
theorem shows the gcd can be uniquely defined and extends the GCD Theorem to
polynomials. A polynomial combination of a(x) and b(x) is a polynomial that
can be expressed as a(x)u(x) + b(x)v(x) for some u(x), v(x) 2 F [x].

Theorem 1.3.3 (GCD). Let a(x), b(x) 2 F [x] with at least one of them nonzero.

There is a unique polynomial d(x) satisfying

(1) d(x) is a common divisor of a(x) and b(x),

(2) d(x) is monic,

(3) d(x) is divisible by all other common divisors of a(x) and b(x) (so it is the

greatest common divisor).

Furthermore, there exist u(x), v(x) 2 F [x] such that d(x) = a(x)u(x) + b(x)v(x).
The set of all polynomial combinations of a(x) and b(x) equals the set of multiples

of d(x).

Proof. Let S = {a(x)s(x) + b(x)t(x) : s(x), t(x) 2 F [x]} be the set of all polyno-
mial combinations of a(x) and b(x). Let d(x) be a nonzero polynomial of minimal
degree in S and let u(x), v(x) be such that d(x) = a(x)u(x) + b(x)v(x). We may
assume that d(x) is monic, since any constant multiple of a polynomial in S is also
in S. I claim d(x) divides a(x) and b(x).

By the QR Theorem applied to a(x) and d(x), a(x) = d(x)q(x)+ r(x) for some
q(x) and r(x) in F [x] with deg(r(x)) < deg(d(x)). Then

r(x) = a(x)� d(x)q(x)

= a(x)�
�
a(x)u(x) + b(x)v(x)

�
q(x)

= a(x)
�
1� u(x)q(x)

�
� b(x)v(x)q(x)

This shows that r(x) is also in S. If it were nonzero, it could be multiplied by a
constant to get a monic element of S with lower degree than d(x), which contradicts
the choice of d(x). We can thus conclude that r(x) = 0, and consequently d(x)
divides a(x).

Similarly, one shows d(x) divides b(x). Thus d(x) is a common divisor of
a(x) and b(x). To show it is the greatest common divisor, let c(x) be any other
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common divisor of a(x) and b(x). Then c(x) divides a(x)u(x) + b(x)v(x) = d(x)
(by divisibility properties) as claimed.

Finally, we note that the set S (which we defined to be the set of polynomial
combinations of a(x)) is also the set of multiples of d(x). Since d(x) divides each
of a(x) and b(x) it will divide any polynomial combination of a(x) and b(x) by
divisibility properties. On the other hand, since d(x) is a polynomial combination
of a(x) and b(x), any multiple of d(x) is also a polynomial combination of a(x)
and b(x) and therefore in S.

The proof of the theorem can be adapted for any set of polynomials P ✓ F [x].
One can show that the smallest degree monic polynomial that can be expressed as
a combination of the elements of P actually divides all the elements of P .

The discussion of the Euclidean algorithm for integers carries over almost ver-
batim to F [x]. We use a(x)//b(x) for the polynomial quotient and a(x)%b(x) for
the remainder of division of a(x) by b(x).

Assume deg(a(x)) � deg(b(x)). Set r�1(x) = a(x) and r0(x) = b(x), and define
inductively (while rk(x) 6= 0)

qk(x) = rk�1(x)//rk(x)

rk+1(x) = rk�1(x)%rk(x), so that

rk�1(x) = qk(x)rk(x) + rk+1(x).

Rearranging these equalites by solving for rk+1(x), we get a sequence

r1(x) = r�1(x)� r0(x)q0(x) = a(x)� b(x)q0(x)

r2(x) = r0(x)� r1(x)q1(x)

r3(x) = r1(x)� r2(x)q2(x)

...

rk+1(x) = rk�1(x)� qk(x)rk(x)

...

rn+1(x) = rn�1(x)� qn(x)rn(x) = 0.

We note that deg(rk(x)) is a strictly decreasing sequence of nonnegative integers.
The process must terminate: for some n, rn+1(x) = 0. Now we make use of the
following lemma, proved using basic divisibility properties.

Lemma 1.3.4. For polynomials a(x), b(x), c(x), s(x) in F [x] that satisfy a(x) =
b(x)s(x) + c(x), we have gcd(a(x), b(x)) = gcd(b(x), c(x)).
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Let’s apply this to the sequence rk(x), letting n be minimal such that rn+1(x) =
0. We have (since rn+1(x) = 0)

gcd(a(x), b(x)) = gcd(b(x), r1(x)) = · · · = gcd(rn(x), rn+1(x)) = gcd(rn(x), 0) = rn(x)

This argument shows that the Euclidean algorithm produces the gcd of a(x) and
b(x).

Exercises 1.3.5. Use the Euclidean algorithm to express the greatest common di-
visor of these two polynomials as a polynomial combination of them.

(a) f = x
4 + x

2 and g = x
3 + 1.

(b) f = x
6 + 1 and g = x

4 + x
3 + x

2 + 1 as elements of F2[x].

Primes, Irreducibles and Unique Factorization

Let r(x) 2 F [x] have degree at least one. As with integers, we say r(x) is irre-
ducible when it can’t be factored in a nontrivial way: whenever r(x) = a(x)b(x)
either a(x) or b(x) is a constant (that is in F ). We say r(x) is prime when
r(x)|a(x)b(x) implies r(x)|a(x) or r(x)|b(x).

As with integers, we have the equivalence of primality and irreducibility, which
is a key step towards proving unique factorization.

Theorem 1.3.6 (Prime-Irreducible). Any nonconstant element of F [x] is irre-

ducible if and only if it is prime.

Proof. Let r(x) 2 F [x] be irreducible; let us show it is prime. Suppose that
p(x)|a(x)b(x) for some a(x) and b(x) in F [x]. We need to show p(x)|a(x) or
p(x)|b(x). If p(x) divides a(x) we are done, so suppose it does not divide a(x).
Since p(x) is irreducible, the GCD of a(x) and p(x) is 1. By the GCD Theorem,
there are polynomials u(x), v(x) such that

1 = a(x)u(x) + p(x)v(x)

Multiplying by b(x)

b(x) = a(x)b(x)u(x) + p(x)b(x)v(x)

Since p(x)|a(x)b(x) we have that p(x) divides the right hand side, and consequently
p(x) divides b(x). Thus we have shown that p(x) is prime.

Suppose now that p(x) is prime; we will show it is irreducible. Let p(x) =
a(x)b(x) be a factorization of p(x). We must show one of a(x) or b(x) is a constant.
Since p(x) is prime and it divides (in fact equals) the product a(x)b(x) it must
divide one of the factors. Without loss of generality, say p(x)|a(x). We then have
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deg(a(x)) � deg(p(x)). On the other hand, since p(x) = a(x)b(x) we have by
additivity of degrees for a product of polynomials,

deg(p(x)) = deg(a(x)) + deg(b(x)) � deg(a(x))

We conclude that deg(p(x)) = deg(a(x)) and deg(b(x)) = 0. Thus b(x) is a
constant.

Theorem 1.3.7 (Unique Factorization). Let a(x) 2 F [x] be nonzero. There is

a nonnegative integer t, a constant u 2 F , distinct monic irreducible polynomials

p1(x), . . . , pt(x), and positive integers e1, . . . , et such that

a(x) = u
�
p1(x)

�
e1
· · ·

�
pt(x)

�
et

Each of t, pi(x), ei and u is uniquely determined, up to reordering of the pi(x)ei.

Proof. TBD

Polynomial modulus

We now extend the technique of modular arithmetic to the polynomial ring over
a field.

Let m(x) 2 F [x] have degree d. Polynomials a(x) and b(x) are congruent
modulo m(x) when m(x) divides a(x)� b(x).

Theorem 1.3.8. Congruence modulo m(x) is an equivalence relation. The set of

polynomials of degree less than � = deg(m(x)) is a system of representatives for

congruence modulo m(x). That is, each polynomial is congruent modulo m(x) to

its remainder when divided by m(x), which has degree less than �.

Any constant multiple ofm(x) will define the same equivalence relation asm(x)
so we usually take m(x) to be monic. We will write [a(x)]m(x) for the congruence
class of a(x) modulo m(x) whenever we need to be careful to distinguish between
a(x), otherwise we will omit the subscript if the modulus is obvious.

Theorem 1.3.9 (Arithmetic modulo m(x)). Suppose that a(x) ⌘ b(x) mod m(x)
and r(x) ⌘ s(x) mod m(x). Then a(x) + r(x) ⌘ b(x) + s(x) mod m(x) and

a(x)r(x) = b(x)s(x) mod m(x). Thus, arithmetic on congruence classes modulo

m(x) is well-defined.

• [a(x)] + [r(x)] = [a(x) + r(x)]

• [a(x)] ⇤ [r(x)] = [a(x)r(x)]
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Proof. Suppose that a(x) ⌘ b(x) mod m(x) and r(x) ⌘ s(x) mod m(x). We have
a(x) = b(x) + u(x)m(x) and r(x) = s(x) + v(x)m(x) for some polynomials u(x)
and v(x). Then

a(x) + r(x) = b(x) + s(x) +
�
u(x) + v(x)

�
m(x), so

a(x) + r(x) ⌘ b(x) + s(x) mod m(x)

We also have

a(x)r(x) = b(x)s(x) +
⇣
a(x)v(x) + b(x)u(x) + u(x)v(x)m(x)

⌘
m(x)

so a(x)r(x) ⌘ b(x)s(x) mod m(x).
This shows that no matter what element of a congruence class is used to rep-

resent a class, arithmetic operations modulo m(x) will give the same result.

We will write F [x]/m(x) for the set of equivalence classes modulo m(x), with
the operations + and ⇤ as designated above.

Exercises 1.3.10.

(a) Letm(x) be an irreducible monic polynomial in F [x]. Let [a(x)] 2 F [x]/m(x)
with a(x) not divisible by m(x). Use the GCD Theorem 1.3.3 to show there
is some r(x) 2 F [x] such that [a(x)][r(x)] = [1].

(b) Extend this result, partially, to other F [x]/m(x). If a(x) 2 F [x] is such
that a(x) is coprime to m(x), then there is some r(x) 2 F [x] such that
[a(x)][r(x)] = [1].
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Chapter 2

Groups

2.1 Groups and Subgroups

The material in this section is a quick summary of the most fundamental properties
of groups. I have omitted some proofs because they are are fairly routine, are good
exercises for the reader, and are available from many sources. See in particular the
book of Hungerford [Hun12]. It is worthwhile reviewing the proofs as you read!

First let us recall the definition of a group.

Definition 2.1.1. A group is a set G with a binary operation ⇤ and a unary
operation denoted a 7�! a

�1 satisfying the following properties.

(1) Associativity of ⇤: For all a, b, c 2 G, (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c).

(2) Identity for ⇤: There is an element, usually denoted e, such that e ⇤ a = a =
a ⇤ e for all a 2 G.

(3) Inverses for ⇤: For each a 2 G the unary operation a 7�! a
�1 gives the

multiplicative inverse for a. That is, a ⇤ a
�1 = e = a

�1
⇤ a.

A group which also satisfies a ⇤ b = b ⇤ a is called commutative or abelian (after
the mathematician Abel).

The operation is usually called a product. So a ⇤ b is the product of a and b.
One must be careful, because, in a nonabelian group, the products a ⇤ b and b ⇤ a

are not necessarily equal. In abelian groups the operation is often called addition
and is written with a + sign, while the identity is written as 0.

The most basic properties are contained in the following proposition. The
proofs of all of these are called “card tricks” by a friend of mine. Any algebraist
should have these up a sleeve since similar cleverness is used in other contexts.

29
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Proposition 2.1.2 (Basic Properties). Let G, ⇤ be a group. Then

(1) The identity element is unique.

(2) The inverse of any element is unique.

(3) The cancellation law holds: a ⇤ b = a ⇤ c implies b = c (and similarly for

cancellation on the right).

(4) If a ⇤ g = g for some g 2 G, then a = eG.

(5) (a ⇤ b)�1 = b
�1

⇤ a
�1

.

(6) (a�1)�1 = a.

Let G be a group. When there is risk of confusion, with more than one group
under consideration, we will use ⇤G for the operation on the group G and eG for
the identity element. Otherwise we will not subscript with G. Unless there is
some reason to be very clear we rarely write the group operation: g1g2 means
g1 ⇤G g2. For a positive integer n, gn is shorthand for gg · · · g| {z }

n factors

and g
�n is shorthand

for g�1
g
�1

· · · g
�1

| {z }
n factors

. It is straightforward to check that the usual rules for exponents

apply.
For a group in which the operation is + and the identity is 0 (in particular,

the group must be abelian), the sum g + g + · · ·+ g| {z }
n terms

is written ng. Think of this

as repeated addition, not as multiplication: the group just has one operation, and
n is an integer, not necessarily an element of the group.

The first examples come from a familiar place, the integers, as discussed in
Section 1.2.

Example 2.1.3. The integers Z form a group with operation +, identity element 0
and inversion operation a 7�! �a. The elements 1 and �1 generate the group Z
in the sense that by applying inversion and repeated addition we can get all the
other elements of Z. This is not true for other elements.

The set of multiples of n in Z also is a group under + with identity 0. Adding
two multiples of n gives another multiple of n, and the additive inverse of a multiple
of n is also a multiple of n. We will denote this group by nZ. Later in this section
we introduce the abstract definition of a subgroup. Here nZ is a subgroup of Z.
The elements n and �n generate nZ just as 1 and �1 generate Z.

The integers modulo n, introduced in Section 1.1, also form a group under +.
We can write the elements as 0, 1, 2, . . . , n� 1, but these are really shorthand for
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congruence classes. When consider the integers modulo n as a group (ignoring
multiplication) we will write it as Zn. An interesting question is: what elements
generate Zn?

Definition 2.1.4. A single element g of a group G generates G when any element
of G is equal to g

n for some n 2 Z (or, if the operation of the group is addition,
any element is equal to ng for some n). Such a group is said to be cyclic.

Let S be a subset of a groupG. We say thatG is generated by S if any element
of G is equal to a product (with an arbitrary number of terms) of elements of S
and elements of

�
s
�1 : s 2 S

 
.

A group is t�generated if there is a subset S of G with t elements that
generates G.

Example 2.1.5. The Cartesian product Z ⇥ Z is a group under coordinatewise
addition with identity element (0, 0) and inverse operator (a, b) 7�! (�a,�b). It
is not possible to generate all elements by repeated addition of a single element,
but this group is 2�generated.

The Cartesian product Z/m ⇥ Z/n under coordinatewise addition (and using
coordinatewise identity elements and inversion) is also a group. In certain cases it
is possible to have a single element generate all elements by repeated addition.

Exercises 2.1.6.

(a) Consider Zn for n = 2, 3, 4, 5, 6, 7. Which elements a 2 Zn generate all of
Zn?

(b) Show that Z⇥ Z is not generated by a single element.

(c) Experiment with some small integers m and n to find cases in which Zm⇥Zn

is generated by a single element and other cases in which it is not.

Definition 2.1.7. The cardinality of a groupG, written |G| is just the cardinality
of the underlying set. It is also called the order of the group.

Many of our examples will be finite groups and we will be studying some of
the properties that go into understanding the structure of finite groups.

Example 2.1.8. Recall the definition of the dihedral group Dn, which is the sym-
metry group of a regular n-gon (1.2.4). We showed that Dn has 2n elements and
that it is 2-generated—by r, the rotation by 2⇡/n, and any reflection, ti. (Well,
we did this for D5, but the same argument holds).

Section 1.2 also introduced Sn, the group of all possible permutations on
{1, 2, . . . , n}. This group has cardinality n!. Composing them is just composing
functions. The inverse permutation involves flipping the two rows of the permu-
tation and then, for convenience, rearranging the columns so that the first row is
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increasing order.

For ⇡ =

✓
1 2 3 4 5
4 3 1 5 2

◆
, the inverse is ⇡�1 =

✓
1 2 3 4 5
3 5 2 1 4

◆
.

The Order of an Element

Definition 2.1.9. For g 2 G the order of the element g is the smallest positive
integer n such that gn = e, if such an n exists. If no such n exists then g has infinite
order. We use |g| or ord(g) for the order of g.

The exponent of G is the least common multiple of the orders of the elements
of G, if such an integer exists, that is exp(G) = lcm {ord(g) : g 2 G}. If no such
element exists one can say the exponent is infinite.

Only the identity element of a group has order 1. Every nonzero element of
Z has infinite order. In Zn some elements have order n, but other non-identity
elements may have a di↵erent order. For any finite group there is a well defined
exponent, but an infinite group may or may not have one.

Theorem 2.1.10 (Order Theorem). Let g be an element of the group G.

(1) If g has infinite order, then elements g
t
for t 2 Z are all distinct.

(2) If g has order n then

(a) g
t = g

s
if and only if t ⌘ s mod n. In particular, g

t = e if and only if

n divides t.

(b) ord(gt) = n

gcd (t,n)
.

Proof. Suppose g
t = g

s for integers s, t. Then g
t�s = eG. If g has infinite order

then s� t = 0 so s = t. This proves item (1).
Suppose g has order n. For an integer t use the quotient remainder theorem to

write t = nq + r. Then g
t = g

nq+r = (gn)qgr = e
q
g
r = g

r. This shows claim (2a).
Now let d = gcd(t, n) and write t = da and n = db. Then a, b have no common
factor (otherwise d would not be the gcd) and we observe that b = n/gcd (t, n).
We now have (gt)b = g

dab = (gn)a = e. Furthermore, if (gt)s = e then, by (2a),
n = db divides ts = das. Cancelling d and taking note of b and a being coprime
we get b divides s. This establishes (2b).

Example 2.1.11. The reflections in Dn all have order 2. The rotation by 2⇡/n has
order n, but some of the other rotations has order less than n. For example in D6

with r the rotation by 2⇡/6, r2 has order 3 and r
3 has order 2.
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Exercises 2.1.12. More card tricks.

(a) Suppose that every element of G has order 2. Show that G is abelian.

(b) If G has even order then G has an element of order 2. (Consider the pairing
of g with g

�1).

Exercises 2.1.13. Order and commutativity.

(a) If g 2 G has order m and h 2 H has order n, find the order of (g, h) 2 G⇥H.

(b) Suppose that a, b 2 G commute (that is ab = ba). If ord(a) and ord(b) are
coprime find the order of ab.

(c) Let A be an abelian group with finite exponent. Show that there is some
a 2 A such that ord(a) = exp(A).

Subgroups

A key area of investigation in many mathematical subjects is the subsets of a given
object that have useful structure. In this section we treat subsets of a group that
are themselves groups.

Definition 2.1.14. A nonempty subset H of a group G is a subgroup, when H

is a group using the operation ⇤G on G. This means that for any h 2 H the inverse
h
�1 must also be in H and for h, h

0
2 H, the product h ⇤G h

0 must also be an
element of H. We will say H is closed under inversion and multiplication.
We will write H  G when H is a subgroup of G (as opposed to H ✓ G when H

is just a subset), and H < G when H is a proper subgroup (that is H 6= G).

The following proposition is a sanity check on our definition of subgroup: the
identity element and inversion are the same for the subgroup as for the group.

Proposition 2.1.15. If K is a subgroup of G then eK = eG and the inversion

operation is the same on K as it is on G.

Proof. If K is a subgroup of G then it must have an identity element. For any
k 2 K, we have (using ⇤K = ⇤G) that eK ⇤K k = eK ⇤G k = k Proposition 2.1.2 (4)
shows that it must be the case that eK = eG. (If something acts like the identity
it is the identity!)

Let k 2 K and let k�1 be its inverse in G. This k�1 is also the inverse of k in
the subgroup K because k ⇤ k

�1 = eG = eK .

(Thank goodness for both of these facts.)

Proposition 2.1.16 (Subgroup Properties). If K is a nonempty subset of G that

is closed under inversion and closed under multiplication in G then K is a subgroup

of G (i.e. it also contains eG).
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If K is a nonempty subset of G such that h ⇤G k
�1

2 K for all h, k 2 K then

K is a subgroup of G.

Proof. Since K is nonempty, it contains some element k. Since K is closed under
inversion, k�1

2 K. Since K is closed under multiplication, k ⇤G k
�1 = eG 2 K.

ThusK satisfies the definition of a group since it has associativity (immediate since
⇤K is the restriction of ⇤G), an identity element, and inverses (by assumption).

Suppose K is a nonempty subset of G such that h ⇤G k
�1

2 K for all h, k 2 K.
For any k 2 K, setting h = k gives k ⇤G k

�1 = eG 2 K. Letting h = eG gives
eG ⇤ k

�1 = k
�1

2 K, so K is closed under inversion. Now for any h, k 2 K we
know k

�1
2 K, so h ⇤G (k�1)�1 = h ⇤G k 2 K. This shows K is closed under

multiplication.

When proving that a particular subset of a group is a subgroup one can either
show the set is closed under inversion and under multiplication, or use the second
property of the theorem. I like the clarity of proving closure under each operation.

Exercises 2.1.17.

(a) Let G be a group and g an arbitrary element of G. Show that
�
g
i : i 2 Z

 

is a subgroup of G. This group is called the cyclic subgroup generated
by g and is written hgi.

(b) Let G be a group. Show that the set Z(G) = {a 2 G : ag = ga for all g 2 G}

is an abelian subgroup of G. It is called the center of G.

(c) Let H and K be subgroups of G. Show that their intersection is also a
subgroup of G.

Note that there is consistency between the order of an element and the order
of the subgroup it generates. If g 2 G has order n then the set of powers of g
is
�
g
0 = eG, g, g

2
, . . . , g

n�1
 
(any other power of g is one of these). This set is a

subgroup of G of order n. If g 2 G has infinite order then it generates a cyclic
subgroup that is infinite. (It is not really cycling in the infinite case, but that’s
the term used!)

Example 2.1.18. As was discussed in Section 1.2, the integers, Z, the rational
numbers, Q, the real numbers, R, and the complex numbers, C, are all abelian
groups under addition. We sometimes write Z,+ (for example) to emphasize that
we are are ignoring multiplication, and are just considering the additive properties
of Z. Clearly we have a sequence of subgroups.

Z < Q < R < C

Example 2.1.19. We showed in Section 1.2 that D5 may be identified with a sub-
group of S5. The discussion can be generalized to show Dn identified as a subgroup
Sn for any n � 3.
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The permutation group S4 may be also seen as contained in S5; it is just the set
of all permutations in S5 that take 5 to 5 (we say these “fix” 5). There are other
subgroups that have the exact same structure as S4. For example the set of all
permutations in S5 that fix 3. These subgroups are all isomorphic (see Section 2.4).

The Lattice of Subgroups

Consider a fixed group G and let S be the set of all subgroups of G. For small
groups, it is often illuminating to draw a diagram showing all the subgroups and
the containment relationships among them. There is no simple and e�cient process
for this in general, but for our small examples one can do the following.

(1) Find all subgroups generated by 1 element.

(2) Find all subgroups generated by 2 elements by adding an new element to the
1-generated subgroups.

(3) See if there are subgroups that require 3 generators by adding an element to
the 2-element subgroups.

Note that there are usually several ways to generate a particular subgroup.
Here are some examples.

h(0, 0)i

h(1, 0)i h(0, 1)ih(1, 1)i

Z2 ⇥ Z2

Figure 2.1: The lattice diagram for Z2 ⇥ Z2.

h(0, 0)i

h(1, 0)i h(0, 1)i

Z2 ⇥ Z3

Figure 2.2: The lattice diagram for Z2 ⇥ Z3.
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h0i

h2i

Z4

Figure 2.3: The lattice diagram for Z4.

⌧✓
1 2 3
1 2 3

◆�

⌧✓
1 2 3
2 1 3

◆�⌧✓
1 2 3
3 2 1

◆� ⌧✓
1 2 3
1 3 2

◆�

⌧✓
1 2 3
2 3 1

◆�
S3

Figure 2.4: The lattice diagram for S3.
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Exercises 2.1.20. Lattice Diagrams for Groups

(a) Draw the subgroup lattice diagram for Z45.

(b) Draw the subgroup lattice diagram for Z60.

(c) Draw the subgroup lattice diagram for Z2 ⇥ Z4.

(d) Draw the subgroup lattice diagram for Z3 ⇥ Z4.

(e) Find all subgroups of Z4 ⇥Z4. Describe the logic of your process for finding
them. Present them in an organized fashion. Draw the lattice if you can.

2.2 Homomorphisms

Definition 2.2.1. Let G and H be groups. A function ' : G �! H is a homo-
morphism when

(1) '(g1 ⇤G g2) = '(g1) ⇤H '(g2) for all g1, g2 2 G, and

(2) '(eG) = eH , and

(3) '(g�1) = ('(g))�1 for all g 2 G.

I like to speak informally about a homomorphism as a function that respects
structure: A homomorphism of groups “respects” the property of the identity
element, multiplication, and inversion.

It is fairly easy to show that the first item in the definition of homomorphism
implies the other two. This result and another important result are contained in
the following proposition.

Proposition 2.2.2 (Homomorphisms). Let G,H,K be groups.

If ' : G �! H is a function such that '(g1 ⇤G g2) = '(g1) ⇤H '(g2) then ' is

a group homomorphism.

If ' : G �! H and ✓ : H �! K are group homomorphisms then the composi-

tion ✓ � ' is also a group homomorphism.

Exercises 2.2.3. Prove the proposition.

(a) Assuming that ' respects multiplication, show that it also takes the identity
of G to the identity of H (use eG ⇤ eG = eG) and that it respects inversion
(use gg

�1 = eG).

(b) Prove that the composition of homomorphisms is a homomorphism.

The simplest type of a homomorphism is the inclusion of a subgroup H of
G into G. That is, when H < G, then there is a function H �! G that takes
elements of H to themselves (now thought of as elements of G).
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Proposition 2.2.4. Let g be an element of a group G. There is homomorphism

' : Z �! G

t 7�! g
t

When g 2 G has infinite order, this homomorphism is injective.

When g 2 G has order n, the function below is an injective homomorphism.

' : Zn �! G

t 7�! g
t

Proof. Let g be an element of a group G. Consider the function Z �! G taking
t to g

t. The function is a homomorphism because for s, t 2 Z, s + t maps to
g
s+t = g

s
⇤ g

t and this is the product of the images of s and t.
Now assume that g has infinite order. Suppose that gs = g

t. Then g
s�t = eG.

Since g has infinite order s� t = 0, so s = t. This proves injectivity.
The proof for g of finite order is similar.

Example 2.2.5. The function Z �! Zn that takes k to its equivalence class modulo
n is a surjective homomorphism.

Proposition 2.2.6. Let G �! H be a homomorphism. The image of G, which

we write '(G), is a subgroup of H.

Proof. We need only show that the image is closed under inversion and multipli-
cation. Consider an element of '(G). Since it is the image of ' we may write it
as '(g) for some g 2 G. By the properties of a homomorphism

'(g�1)'(g) = '(g�1
g) = '(eG) = eH

This shows that the inverse of '(g) is '(g�1) and therefore that it is in the image
of '.

Consider two elements of '(G), which we may write as '(g1) and '(g2). Their
product is '(g1)'(g2) = '(g1g2), and this is in the image of '. We have shown
that '(G) is closed under inversion and under multiplication so it is a subgroup of
G.

Isomorphisms

A homomorphism ' that is also a bijection (one-to-one and onto) is called an
isomorphism. When there exists an isomorphism ' : G �! H we say G and
H are isomorphic and write G ⇠= H. The following proposition shows that the
relation of being isomorphic satisfies symmetry and transitivity so it determines
an equivalence relation on any set of groups.
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Proposition 2.2.7 (Isomorphisms). If ' is an isomorphism of groups, then the

inverse function '
�1

is also an isomorphism of groups.

If ' : G �! H and ✓ : H �! K are group isomomorphisms then the composi-

tion ✓ � ' is also a group isomorphism.

On any set of groups G, the relation of being isomorphic is an equivalence

relation.

Proof. Let ' : G �! H be an isomorphism of groups. By definition, ' is both
injective and surjective, so there is a well defined inverse function, '�1. We must
show that '�1 is a homomorphism.

Let h1 and h2 be two elements of h. Since ' is surjective there are two elements
g1 and g2 such that '(g1) = h1 and '(g2) = h2. Since ' is injective these two
elements are uniquely defined. We now show that '�1 respects products, which is
enough to show it is a homomorphism.

'
�1(h1h2) = '

�1 ('(g1)'(g2))

= '
�1 ('(g1g2)) since ' is a homomorphism

= g1g2 since ' and '�1 are inverse functions

= '
�1(h1)'

�1(h2)

The composition of two bijections is a bijection, and by Proposition 2.2.6 we
know that the composition of homomorphisms is a homomorphism. Thus the
composition of two isomorphisms is an isomorphism.

Clearly any group is isomorphic to itself under the identity map. The first part
of this proposition shows that if G is isomorphic to H then H is also isomorphic
to G. The second part establishes transitivity.

If there is an isomorphism between groups G and H then G and H have the
same algebraic structure, so we consider them equivalent.

Exercises 2.2.8.

(a) Show that for each a 2 Zn there is a unique homomorphism
'a : Zn �! Zn such that 'a(1) = a.

(b) Under what conditions on a is 'a an isomorphism?

(c) Identify all subgroups of Zn.

Exercises 2.2.9.

(a) Show that if d | n then there is a homomorphism Zn to Zd that takes 1 (in
Zn) to 1 (in Zd). Show that it is also surjective.

(b) Show that if d does not divide n then there is no homomorphism Zn to Zd

that takes 1 (in Zn) to 1 (in Zd).
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Exercises 2.2.10.

(a) Show that there is an injective homomorphism from Zn into Dn taking 1 to
rotation by 2⇡/n.

(b) How many injective homomorphisms are there from Zn into Dn?

(c) Identify all subgroups ofDn for n = 3, 4, 5, 6. Draw a lattice diagram showing
containment of subgroups.

Exercises 2.2.11. A Perverse Group

(a) Show that Z is a group under the operation ⇤ defined by a⇤b = a + b � 2.
(What is the identity element? What is the inverse of an element a?)

(b) Find an isomorphism from Z,+ to Z,⇤.

Exercises 2.2.12. Prove the following results about the relationship between the
order of an element and the order of its image under a homomorphism.

(a) If ' : G �! H is a homomorphism, then ord('(g)) divides ord(g).

(b) If ' : G �! H is an isomorphism, then ord('(g)) = ord(g).

The previous exercises give important restrictions on homomorphisms. If you
want to create a homomorphism from G to H, each element g in G must go to an
element of H that has order dividing ord(g).

Exercises 2.2.13.

(a) Show that there is a nontrivial homomorphism from D3 to Z2 but that any
homomorphism from D3 to Z3 is trivial.

2.3 Some Constructions of Groups

In this section we show three ways to construct new groups from ones that we
already have. All three have been touched on briefly; we give more detail here.
The first construction really has two aspects, given some subgroups of a group
we can form the intersection of the subgroups and also the join of the subgroups.
More broadly, given a subset of a group we can define the subgroup generated
by the subset. The second construction is the direct product of groups. The
idea is simple (and was illustrated in the first examples of groups that we gave).
Given two groups, form the Cartesian product as sets, and apply componentwise
operations to get a new group. The construction yields in a natural way two types
of homomorphisms that are important despite their simplicity. The direct product
can also be applied to several groups not just two. Finally, for a given group G the
isomorphisms of G to itself have a group structure that is useful in understanding
the properties of G.
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Intersections and the Join of Subgroups

Proposition 2.3.1. Let H1, . . . , Ht be subgroups of G. The intersection
T

t

i=1
Hi

is a subgroup of G.

More generally, if H is a set of subgroups of G then
T

H2H
H is a subgroup of

G.

Proof. Suppose h and h
0 are in

T
H2H

H. Since each H 2 H is a subgroup of G,
h
0
h
�1

2 H for each H 2 H. Thus h0h�1
2
T

H2H
H, and Proposition 2.1.16 showsT

H2H
H is a subgroup of G.

Let S be an arbitrary subset of a group G. Let H be the set of all subgroups of
G containing S. Then

T
H2H

H is a subgroup of G, and it contains S, since each
H 2 H contains S. Furthermore, any subgroup K of G containing S is in H soT

H2H
H ✓ K. This argument justifies the following definition.

Definition 2.3.2. Let G be a group and let S be a subset of G. By hSi we mean
the smallest subgroup of G containing S. It is the intersection of all subgroups
of G containing S. We say hSi is the subgroup of G generated by S.

If H and K are subgroups of G their join, written H _K, is hH [Ki.

One interesting problem is to find minimal size sets that generate a group. For
example, the elements 1 and �1 both generate Z. The element 1 generates Zn as
does any a 2 Zn that is coprime to n. (Exercise 2.1.6.)

The Direct Product

Definition 2.3.3. Let G and H be groups. The Cartesian product G⇥H, along
with the unary operation (of inversion) and the binary operation (of multiplication)
below form the direct product of G and H.

(g, h)�1 = (g�1
, h

�1)

(g1, h1) ⇤G⇥H (g2, h2) = (g1 ⇤G g2, h1 ⇤H h2)

The identity element is of course (eG, eH).

The following proposition shows that the direct product is in fact a group and
gives other important properties. None of the following are surprising and they
are routine to prove.

Theorem 2.3.4 (Direct Product). Let G and H be groups.

(1) The above definition does, indeed, make G⇥H a group.
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(2) The associative law for the product of several groups holds: G1⇥(G2⇥G3) ⇠=
(G1 ⇥G2)⇥G3.

(3) G⇥H is abelian if and only if G and H are abelian.

(4) If G
0
is a subgroup of G and H

0
is a subgroup of H then G

0
⇥H

0
is a subgroup

of G⇥H. In particular G⇥ {eH} and {eG}⇥H are subgroups of G⇥H.

(5) There is an injective homomorphism iG : G �! G ⇥ H taking g to (g, eH)
(and similarly iH : H �! G⇥H).

(6) The projection maps pG : G⇥H �! G and pH : G⇥H �! H are surjective

homomorphisms.

(7) The construction and the observations above can be generalized to the direct

product of any set of groups {Gi : i 2 I} indexed by a finite set I. (It extends

to infinite index sets I with some modification due to subtle issues.)

The following result is more subtle and it turns out to be a powerful idea.

Proposition 2.3.5 (Universal Property of the Product). Let G,H, and T be

groups, and let ' : T �! G and  : T �! H be homomorphisms. The function

↵ : T �! G⇥H defined by t 7�! ('(t), (t)) is a homomorphism. It is the unique

homomorphism such that pG � ↵ = ' and pH � ↵ =  .

Proof. Note first that, by construction, pG � ↵ = ' and pH � ↵ =  . Furthermore,
there is no other choice for the definition of ↵ that satisfyies these to requirements.

We have to show that ↵ respects inversion and multiplication. Let t 2 T .
We have to show that ↵(t�1) is the inverse of ↵(t). The subscript on ⇤ that we
sometimes use to show the group being used is omitted in the following derivation,
but it is worthwhile to identify it while reading.

↵(t) ⇤ ↵(t�1) =
⇣
'(t), (t)

⌘
⇤

⇣
'(t�1), (t�1)

⌘

=
⇣
'(t) ⇤ '(t�1), (t) ⇤  (t�1)

⌘

=
⇣
'(t ⇤ t�1), (t ⇤ t�1)

⌘

= (eH , eK)
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This proves that ↵(t�1) is the inverse of ↵(t). Similarly for t1, t2 2 T ,

↵(t1) ⇤ ↵(t2) =
⇣
'(t1), (t1)

⌘
⇤

⇣
'(t2), (t2)

⌘

=
⇣
'(t1) ⇤ '(t2), (t1) ⇤  (t2)

⌘

=
⇣
'(t1 ⇤ t2), (t1 ⇤ t2)

⌘

= ↵(t1 ⇤ t2)

This shows ↵ respects products.

Exercises 2.3.6.

(a) Not all subgroups of G ⇥ H are direct products of subgroups of G and H.
Illustrate with some examples: Z2 ⇥ Z2, Z4 ⇥ Z4.

Exercises 2.3.7. We have shown that there is a homomorphism Zn �! Zd taking
1 in Zn to 1 in Zd if and only if d | n. Suppose c and d both divide n.

(a) What is the kernel of the homomorphism Zn �! Zc ⇥ Zd?

(b) Under what conditions is it an isomorphism?

(c) Illustrate with n = 8 and c = d = 4. What is the image?

(d) Illustrate with n = 18 and c = 6 and d = 9. What is the image?

Automorphism Groups

Proposition 2.3.8 (Automorphisms). Let G be a group. The set of all isomor-

phisms from G to itself is a group. This new group is called Aut(G), the group of

automorphisms of G.

Proof. The identity map idG is clearly an automorphism of G, so there is at least
one automorphism of G. The composition of idG with any automorphism ' : G �!

G is ', since the identity map takes each element to itself. Proposition 2.2.7 shows
that the inverse of an isomorphism is an isomorphism and the composition of two
isomorphisms is an isomorphism. Thus Aut(G) is a subgroup of the group of
bijections of G.

Exercises 2.3.9.

(a) Show that Aut(Z) has two elements and Aut(Z) ⇠= Z2.

(b) Compute Aut(Zn) for n = 2, 3, 4, 5, 6, 7. [In each case the answer is a cyclic
group.]

(c) Show that Aut(Z8) is not cyclic.
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2.4 Permutation Groups

In this section we delve more deeply into the structure of the symmetric group
Sn, the group of permutations of {1, . . . , n}. The number of elements in Sn is n!.
Informally, we may justify this claim by noting that there are n possible images
for the number 1. Once the image for 1 is chosen, there are n � 1 choices for the
number 2. Continuing in this manner we count n! bijections from {1, . . . , n} to
itself. One can give a more formal inductive proof.

We will sometimes write an element ⇡ of Sn in tabular form with i in the top
row and ⇡(i) in the bottom row.

Exercises 2.4.1.

(a) Here are two elements of S5:

⇡ =

✓
1 2 3 4 5
3 5 1 2 4

◆
and � =

✓
1 2 3 4 5
1 3 4 2 5

◆
.

(b) Compute the inverse of each.

(c) Compute the products ⇡� and �⇡, using the usual convention for composi-
tions: (⇡�)(i) = ⇡(�(i)). You should see that the results are not equal.

Example 2.4.2. Let n = 3, and enumerate the vertices of a triangle clockwise as
1, 2, 3. Each element of D3 gives rise to a permutation of {1, 2, 3}.

Let r be rotation clockwise by 2⇡/3. Then

r =

✓
1 2 3
2 3 1

◆
and r

2 =

✓
1 2 3
3 1 2

◆
.

There are three reflections, each fixes one element of {1, 2, 3} and transposes the
other two

u1 =

✓
1 2 3
1 3 2

◆
u2 =

✓
1 2 3
3 2 1

◆
u3 =

✓
1 2 3
2 1 3

◆
.

This exhausts all permutations of {1, 2, 3} so by enumerating the vertices of the
triangle we have established a bijection between D3 and S3. This is actually an
isomorphism since the operation for D3 is composition, as it is for Sn.

Exercises 2.4.3.

(a) How many ways are there to embed Z4 in S4?

(b) How many ways are there to embed D4 in S4?
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Cycle Decomposition

Definition 2.4.4. Let a1, a2, . . . , at be distinct elements of {1, . . . , n}. We use the
notation (a1, a2, . . . , at) to define an element of Sn called a t-cycle. This permu-
tation takes ai to ai+1, for i = 1, 2, 3 . . . , t� 1 and it takes at to a1. Every element
of {1, . . . , n} \ {a1, . . . , at} is fixed (i.e. taken to itself) by the cycle (a1, a2, . . . , at).
We will call the set {a1, . . . , at} the support of the cycle (a1, a2, . . . , at).

A two-cycle is often called a transposition.
Two cycles are called disjoint when their supports are disjoint sets.
When we use cycle notation we will use id for the identity permutation.

Exercises 2.4.5.

(a) Show that disjoint cycles commute.

(b) Suppose � is a t-cycle. For which r is �r a t-cycle? What can happen for
other r?

(c) Show that for a t-cycle �, there is an injective homomorphism Zr �! Sn

taking 1 to �.

Definition 2.4.6. Let ⇡ 2 Sn. The orbit of a 2 {1, . . . , n} under ⇡ is the set�
⇡
i(a) : i 2 Z

 
.

Let ⇡ 2 Sn. A cycle decomposition for ⇡ is a product of disjoint cycles that
is equal to ⇡.

We want to show every permutation has a unique cycle decomposition. The
first step is this lemma.

Lemma 2.4.7. Let ⇡ 2 Sn. Any two orbits of ⇡ are either equal or disjoint.

Proof. Suppose two orbits of ⇡ 2 Sn are not disjoint. We will show they are equal.
Let a, b, c be distinct elements of {1, 2, . . . , n}. Suppose that b is in the orbit of a
and also in the orbit of c. We will show that orb(a) = orb(c). We have assumed
⇡
i(a) = b and ⇡

j(c) = b for some i, j 2 Z. Then ⇡
i(a) = ⇡

j(c) so ⇡i�j(a) = c

so c is in orb(a). Moreover, anything in the orbit of c must be in the orbit of
a since ⇡k(c) = ⇡

k+i�j(a). The reverse is also true by the same reasoning, so
orb(a) = orb(c).

Proposition 2.4.8. Every permutation in Sn has a cycle decomposition, and it is

unique up to reordering the factors.

Proof. This is just a sketch that should make sense, and one could formalize it
using induction. Take an element a 2 {1, . . . , n}. Since {1, . . . , n} is finite, there
is some pair of distinct positive integers such that ⇡i(a) = ⇡

j(a). Notice that
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⇡
i(a) = ⇡

j(a) implies ⇡i�1(a) = ⇡
j�1(a) and so forth until ⇡i�j(a) = a. Thus,

there is some minimal positive integer, call it d, such that ⇡d(a) = a. It should
be clear that, for m 2 Z, ⇡m(a) = ⇡

r(a) for r the remainder when m is divided
by d. Now consider the cycle (a,⇡(a), . . . ,⇡r�1(a)). The orbit of a is this set
of elements, orb(a) =

�
a,⇡(a), . . . ,⇡r�1(a)

 
. Consequently, ⇡ can be written as

the product of (a,⇡(a), . . . ,⇡r�1(a)) and some other permutation that fixes each
element in orb(a). Now choose an element of {1, . . . , n} \ orb(a) and look at its
orbit; continue.

Definition 2.4.9. We will call the list of cycle lengths, in decreasing order, the
signature of the permutation.

We will include one-cycles in the definition of the cycle decomposition, although
we will not write them unless it is needed for clarity. For example, the permutation
⇡ in S5 from Exercise 2.4.1 has cycle decomposition ⇡ = (1, 3)(2, 5, 4) and signature
3, 2. If we consider ⇡ as an element of S6, we have ⇡ = (1, 3)(2, 5, 4)(6) and the
signature is 3, 2, 1.

Exercises 2.4.10. Prove the following results about the signature of a permutation.

(a) For ⇡ 2 Sn, the sum of the signature list is n.

(b) If ⇡ = �1�2 · · ·�r is a cycle decomposition, then ⇡
k = �

k

1
�
k

2
· · ·�

k
r . Under

what conditions is this also a cycle decomposition in the sense that each �k
i

is a cycle?

(c) The order of ⇡ 2 Sn is the lcm of the signature list.

Exercises 2.4.11. A sanity check: For n = 4 and n = 5 do the following to check
that all elements of Sn are accounted for.

(a) Identify all possible signatures for elements of Sn and find the order of an
element with the given signature.

(b) What is the exponent of Sn?

(c) For each possible signature in Sn, count how many elements have that sig-
nature. Then check that you get the correct total number of elements in
Sn.

Transpositions and the Alternating Group

There is another factorization that is important.

Proposition 2.4.12. Every permutation can be written as a product of transpo-

sitions.
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Proof. Since every permutation is a product of cycles, it is enough to show that
every cycle is a product of transpositions. This is shown by verifying that

(a1, a2, . . . , at) = (a1, a2) ⇤ (a2, a3) ⇤ · · · ⇤ (at�2, at�1) ⇤ (at�1, at)

Recall that we treat permutations are functions and we apply the rightmost per-
mutation first. One can see that at gets mapped to at�1 then at�2 and so forth,
until the final transposition is applied and takes a2 (the image of at at this point)
to a1. Similar arguments apply to the other ai.

We may interpret the previous result as saying that Sn is generated by trans-
positions. That is somewhat good news: there are n! elements of Sn but only

�
n

2

�

transpositions. Thus n(n� 1)/2 elements of Sn are enough to generate Sn. In fact
we can do much better!

Exercises 2.4.13. Generators for Sn.

(a) Show that Sn is generated by the n � 1 elements (1, k) for k = 2, . . . , n.
[Show that you can get an arbitrary transposition by conjugating (1, k) by
some (1, j), see Definition 2.6.9.]

(b) Show that Sn is generated by 2 elements: (1, 2) and (1, 2, 3, . . . , n � 1, n).
[Show that you can get all (1, k) from these two using conjugation and then
apply the previous exercise.]

Exercises 2.4.14.

(a) Let a, b, c be distinct elements of {1, . . . , n}. Write down all possible factor-
izations of the 3-cycle (a, b, c) as a product of 2 transpositions.

(b) Let a be an element of {1, . . . , n}. Let ⌧1, ⌧2 be transpositions in Sn with
⌧1 6= ⌧2. Show that there exist transpositions �1,�2 2 Sn such that �1�2 =
⌧1⌧2 and a is not in the support of �2. [You will need to consider a few
di↵erent cases depending on whether a is in the support of ⌧1 or ⌧2.]

We know from the previous proposition that a permutation can be written
as a product of transpositions. This “factorization” is not unique, for example
id = (1, 2)(1, 2) = (1, 3)(1, 3), but the next proposition shows that the parity of
the factorization is.

Proposition 2.4.15. The identity element of Sn cannot be written as the product

of an odd number of transpositions.

Consequently, any permutation can be written as a product of an even number

of transpositions, or an odd number of transpositions, but not both.

Proof. We will show that if id is the product of n transpositions then it is the
product of n�2 transpositions. Consequently, if it is the product of an odd number
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of transpositions, inductively we could show that id is a single transposition. This
is clearly false.

Suppose that id = ⌧1 · · · ⌧n with ⌧i = (b2i�1, b2i). The bi are not necessarily
distinct, except b2i�1 6= b2i so that ⌧i is indeed a transposition. Let a = b1. Let
k be the largest integer such that a is in the support of ⌧k (so either b2k�1 or b2k
is equal to a). Note that k 6= 1 because if a was only in the support of ⌧1 then
⌧1 · · · ⌧n(a) = ⌧1(b1) = b2 6= a and the factorization would not be the identity.

Using the previous exercise we can rewrite the factorization of the identity
replacing ⌧k�1⌧k with �k�1�k in which a is not in the support of �k (the indexing
of k � 1 and k on �k�1 and �k is just for notational convenience). We have a new
factorization of id with n terms, but now, only the transpositions ⌧1, . . . , ⌧k�2 and
�k�1 can have a in the support. If ⌧k�2 = �k�1 we can cancel and get a shorter
factorization of the identity using n� 2 transpositions, as claimed. Otherwise we
repeat the process: find the largest index such that the transposition with that
index has a in the support; use the exercise to move a into a lower index term;
cancel if possible; if not repeat. Eventually we either get a cancelation, or we arrive
at a factorization ⌧1�2 · · · ⌧k+1⌧k+2 · · · ⌧n in which only the first two transpositions
⌧1 and �2 have a in their support. Then ⌧1�2(a) = id(a) = a. This is possible
only if ⌧1 = �2. Thus we may cancel and get id equal to the product of n � 2
transpositions as claimed.

For the second part, suppose that ⇡ is the product of transpositions in two
ways: ⇡ = �1�2 . . .�m = ✓1✓2 . . . ✓k. Then id = �1�2 . . .�m✓

�1

1
✓
�1

2
. . . ✓

�1

k
. Thus

m+k must be even, and this implies that m and k must have the same parity.

We now have an important and easy consequence.

Proposition 2.4.16. The set of even parity permutations forms a subgroup of Sn.

This is called the alternating group and is denoted An.

Furthermore, there is a homomorphism from Sn to Z2 whose kernel is An.

Exercises 2.4.17.

(a) Suppose that � is a k-cycle and ⌧ is an m-cycle and there is exactly one
element of {1, . . . , n} that is in the support of both � and ⌧ . Show that �⌧
is a (k +m� 1)-cycle.

(b) Show that the product of two disjoint transpositions can also be written as
the product of two 3-cycles.

(c) Use part (a) (with k = m = 2) and part (b) to prove that An is generated
by 3 cycles.

(d) Compute (1, 2, a)(1, b, 2) for a, b distinct and not equal to 1 or 2. Use the
result as motivation to show that the 3-cycles of the form (1, 2, a) generate
An for n � 4.
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Exercises 2.4.18.

(a) Show that there is a homomorphism from Sn to Z2 whose kernel is An.

(b) Find all subgroups of A4. Draw a diagram of the subgroup lattice.

(c) What is the intersection of A4 and D4?

Cayley’s Theorem

For any set T , the set of bijections from T to itself forms a group under composition
with the indentity map, id(t) = t, acting as identity element and f mapping to the
inverse of a function f as the operation of inversion. In a manner similar to our
notation for permutations of {1, . . . , n}, we will write the group of bijections of an
arbitrary set T as ST . The elements of ST will also be called permutations of T .

For a group G, we can forget that G is a group and just look at arbitrary
bijections (set maps) from G to itself, that is SG. The next theorem shows there
is an injective homomorphism from G to SG.

Theorem 2.4.19. Any group G is isomorphic to a subgroup of SG, the group of

(set) bijections of G to itself. If |G| = n there is an embedding of G in Sn.

Proof. For each a 2 G, left multiplication by a maps elements of G to elements
of G. Let us call this map �a : g �! ag. We can see that �a is a permutation
of G as follows. For any g 2 G, �a(a�1

g) = a(a�1
g) = g, so a

�1
g is a preimage

for g. Since g was arbitrary, �a is surjective. We also have �a is injective because
�a(g) = �a(g0) implies ag = ag

0, which by cancellation in G gives g = g
0.

Define � : G �! SG by � : a �! �a. Since �a(e) = a, we have �a = �b can
only be true if a = b. Thus � is injective. To show it is a homomorphism we have
to show that �ab = �a � �b. The following computation does that. We have for all
g 2 G,

�ab(g) = (ab)g = a(bg) = �a(bg) = �a(�b(g)) = (�a � �b)(g)

For a finite set T of cardinality n, it should be clear that ST is isomorphic to
Sn. Nevertheless, it is worth explicitly giving a construction of an embedding of
G into Sn, for |G| = n. Suppose G has order n and enumerate the elements of G
so G = {g1, . . . , gn}. For any a 2 G, we have shown that �a, left multipication by
a, permutes the elements of G. Define 'a 2 Sn by 'a(i) is the unique j such that
agi = gj . We may then write agi = g'a(i)

. Observe that

g'ab(i)
= abgi = a(bgi) = a(g'b(i)

) = g'a('b(i))
= g'a�'b(i)

This shows that 'ab = 'a � 'b so the function ' is a homomorphism.
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Exercises 2.4.20. Cayley’s Theorem

(a) Let n = 5 and think of Zn in the usual way as {0, 1, 2, 3, 4} with addition
modulo n. For each a 2 Zn write down in tabular form the function on Zn

defined by addition of a.

(b) Show that part (a) defines a function from Z5 to S5, provided you think of
S5 as the group of permutations of {0, 1, 2, 3, 4}. Show that this function is
a homomorphism.

(c) Now consider Z2 ⇥ Z2. Enumerate the 4 elements in any way you choose as
a1, a2, a3, a4. For each ai define a permutation �i by aia1 = a�i(1)

, aia2 =
a�i(2)

, aia3 = a�i(3)
, aia4 = a�i(4)

.

(d) Show in part (c) that this gives a homomorphism from Z2 ⇥ Z2 to S4.

(e) Similarly, the next steps define a homomorphism from D3 to S6. Enumerate
the elements of as follows

D3 =
�
a1 = r

0
, a2,= r, a3 = r

2
, a4 = t, a5 = rt, a6 = r

2
t
 

For each ai define a permutation �i in S6. Since a1 is the identity in D3, �1
is the identity permutation in S3. One can see that �2 is given by �2(i) = k

whenever rai = ak. Verify that each �i is indeed a permutation by writing
it in permutation notation.

(f) Verify in three examples that for any a, b 2 D3, the permutation correspond-
ing to ab equals the product of the permutations corresponding to a and b.

(g) Which elements of D3 correspond to odd permutations in S6?

Exercises 2.4.21.

(a) Let A and B be disjoint subsets of {1, . . . , n}. Explain how to think of
SA ⇥ SB as a subgroup of Sn.

(b) Generalize to any partition of {1, . . . , n}.

Exercises 2.4.22.

(a) Let n be a positive integer and k > n/2. Find a formula for the number of
elements of Sn that include a k-cycle.

(b) Use Stirling’s formula to approximate the formula you just computed.

(c) Estimate the probability that a random element of Sn has a cycle of length
larger than n/2.
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