
2.5 Generators and Relations

There is another way to describe groups using “generators” and “relations.” A
set of generators for the group is given, and then certain properties that must be
satisfied by those generators are listed. The latter are called the relations. Identi-
fying the generators and relations for a group is called giving a presentation of
the group. The group is then the set of all possible products of the generators and
their inverses (these are informally called “words”). The relations say that some
words are equal to the identity, so they give a way to simplify words. The descrip-
tion via generators and relations can be straightforward in the simplest instances,
but it is quite subtle in general. We give a few examples here and defer a more
thorough treatment to Section 3.4.

We have noted that Z requires only one generator, as do the groups Zn. We
may describe Zn (actually a group isomorphic to it) using the generator a, and the
relation a

n = 1, in which I use 1 for the identity element. This would be written

ha|a
n = 1i

The homomorphism Zn �! ha|a
n = 1i taking 1 to a is clearly an isomorphism.

We could also describe Zn in other ways. For example when p and q are distinct
primes (or even just coprime to each other), we could use two generators.

Zpq
⇠= ha, b|ap = 1, bq = 1, ab = bai

This tells us that a is an element of order p, b is an element of order q and that a
and b commute. The latter relation could also be written aba

�1
b
�1 = 1.

Exercises 2.5.1.

(a) Show that the presentation for Zpq in the previous paragraph is isomorphic
to the group with presentation hc|cpq = 1i via the function c! ab.

The dihedral group Dn has a presentation as follows

ha, b|a
n = 1, b2 = 1, ba = a

n�1
bi

The generator a is clearly playing the role of rotation by 2⇡/n and b the role of
a reflection. The final relation tells us that in any product using a and b we can
switch any occurrence of ba to be a

n�1
b and thereby rearrange so that all the as

are on the left and all the bs on the right. So, just using these relations we know
that any element of this group can be uniquely written a

i
b
k for i 2 {0, . . . , n� 1}

and k 2 {0, 1}. The group product is easily summarized by the following

(ai)(ajbk) = a
i+j

b
k

(aib)(ajbk) = a
i�j

b
k+1
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Exponents on a are computed modulo n and on b modulo 2. It is easy to verify
that our earlier discussion of Dn (Section ??) is consistent with the description
here: for any reflection ti, tir = r

�1
ti.

Exercises 2.5.2. Here is another group. It is called the quaternion group.

Q = ha, b | a4 = 1, b2 = a
2
, ba = a

�1
bi

(a) Show that Q has 8 elements. List them in a useful fashion and show how to
multiply them as we did for the dihedral group.

(b) Show that Q has 1 element of order 2 and 6 of order 4.

(c) Draw the lattice diagram for this group.

Exercises 2.5.3. The infinite dihedral group. Let

D1ha, b | b
2 = 1i

(a) Show that D1 is a symmetry group of the following diagrams.

(b) What other symmetries do these diagrams have that are not captured by
D1?
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2.6 Cosets and Conjugates

Let H be a subset of G. In this section we define cosets of H and show an
extremely important result (Lagrange’s Theorem) that the cosets form a partition
of G. We also show there is another interesting partition of G that is determined
by a relation called conjugacy.

The following bit of notation is useful.

Notation 2.6.1. Let S and T be subsets of a group G.

ST = {st : s 2 S, t 2 T}

So, ST is the set of all products of an element in S (on the left) and an element of
T (on the right). Similarly, for g 2 G, gS = {gs : s 2 S}. We may use analogous
notation for the set of all products from 3 or more sets, taking note that for three
sets, (ST )U = S(TU), by associativity, so we may just call this set STU .

If the group is abelian and the operation is + we write S + T instead of ST .

Notice that ST and TS are not necessarily equal when the group G is not
abelian.

Exercises 2.6.2. R
evisiting the properties of a subgroup.

(a) Let T be a subset of a group G. Prove that T is a subgroup of G if and only
if TT = T and T

�1
T = T .

(b) Let T be a subset of the finite group G. Prove that TT = T if and only if T
is a subgroup of G.

(c) Give an example to show that for an arbitrary group show that TT = T is
not su�cient to ensure T is a group of G.

Definition 2.6.3. Let H  G and let g 2 G. The set gH is a left coset of H in
G. Similarly, Hg is a right coset of H in G.

We will prove several results for left cosets. There are analogous results for
right cosets.

Lemma 2.6.4. Let G be a group and H a subgroup of G. The function

�g : H �! gH

h 7�! gh

is a bijection.
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Proof. The function �g is a surjection by the definition of gH. Suppose gh = gh
0.

Multiplying on the left by g
�1 gives h = h

0. This shows �g is injective.

Lemma 2.6.5. Let G be a group and H a subgroup of G. For a, g 2 G, if

gH \ aH 6= ; then gH = aH.

Proof. First, we show that if g 2 aH then gH ✓ aH. Let g 2 aH, so there is some
k 2 H such that g = ak. For any h 2 H, we have gh = akh and this is an element
of aH because kh 2 H since H is a subgroup of G. This shows gH ✓ aH.

Suppose gH \ aH is nonempty, containing some element x. Then there are
h, k 2 H such that x = gh = ak. Then g = akh

�1
2 aH and similarly a =

ghk
�1
2 gH. From the previous paragraph, we have aH ✓ gH and gH ✓ aH, so

aH = gH.

Theorem 2.6.6 (Lagrange). Let G be a group with subgroup H. The set of cosets

of H form a partition of G.

Consequently, if G is a finite group with subgroup H then the order of H divides

the order of G. In particular, the order of any element of G divides |G|.

Proof. Any g 2 G is in some coset, namely gH, so the cosets cover G. The previous
lemma shows that any two unequal cosets are disjoint. Thus the cosets partition
G.

Suppose G is finite. Since the cosets of H partition G, there are elements
a1, . . . , at such that G is the disjoint union of a1H, a2H, . . . , atH. The cosets of H
all have the same number of elements by Lemma 2.6.4. Thus |G| =

P
t

i=1|aiH| =
t|H|, and the number of elements of G is a multiple of |H|.

For any a 2 G the number of elements in the subgroup hai is ord(a). So ord(a)
divides |G|.

Definition 2.6.7. Let H  G. The index of H in G, written [G : H], is the
number of cosets of H in G, which may be infinite.

If G is finite and H  G then [G : H] = |G|/|H|, since all cosets have |H|

elements.

Exercises 2.6.8. Recall that the exponent of a group G is the lcm of the orders of
the elements (if this is finite).

(a) For a finite group G with finite exponent t show that t divides the order of
G.

(b) Give an example to show that there may not be an element in G whose order
is the exponent of G.
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Conjugation

Now we consider conjugation.

Definition 2.6.9. Let a 2 G and g 2 G. The element aga�1 is called the conju-
gation of g by a. If S is a subset of G, we define aSa

�1 to be
�
asa

�1 : s 2 S
 
.

It is the conjugation of S by a.

Proposition 2.6.10. Conjugacy on a group G determines an equivalence relation.

Proof. Let G be a group and define a relation on G by a is related to b if there
is some g such that b = gag

�1. The relation is reflexive, because for any a 2 G,
eae

�1 = a. The relation is symmetic, because if a is related to b (say b = gag
�1)

then we also have a = g
�1

b
�
g
�1
�
�1

so b is related to a. Finally suppose a is
related to b (again b = gag

�1) and b is related to c (so there is some h 2 G with
c = hbh

�1). Then

c = hbh
�1 = h

�
gag

�1
�
h
�1 =

�
hg
�
a
�
hg
�
�1

This shows that a is related to c. We have shown that conjugacy determines an
equivalence relation on G.

Exercises 2.6.11. Let C(a) = {g 2 G : ga = ag} be the centralizer of a.

(a) Show that C(a) is a subgroup of G.

(b) Let G be a finite group. Show that the number of elements of G conjugate
to a is |G|/|C(a)|. [Consider the cosets of C(a).]

Exercises 2.6.12. Conjugates and subgroups.

(a) Show that An is invariant under conjugation: for any ⇡ 2 Sn, ⇡An⇡
�1 = An.

(b) Let Cn be the rotation subgroup of Dn. Find two elements of C4 that are
conjugate as elements of D4 but are not conjugate as elements of C4.

(c) Find two elements of D4 that are conjugate as elements of S4 but are not
conjugate as elements of D4.

Exercises 2.6.13. Let H be a subgroup of a group G.

(a) Let a 2 G. Show that aHa
�1 is a subgroup of G.

(b) Show that there is an isomorphism between H and aHa
�1.

Exercises 2.6.14. Inner automorphisms.

(a) Define a function 'a : G �! G by '(g) = aga
�1. Show that 'a is an

automorphism of G.

(b) Show that ' : G �! Aut(G) defined by ' : a 7�! 'a is a homomorphism.
The image, {'a : a 2 G}, is therefore a subgroup of Aut(G). It is called
Inn(G), the group of inner automorphisms of G.
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(c) What is the kernel of '?

Proposition 2.6.15. Let ⇡ 2 Sn. For any � 2 Sn, the signature of � and the

signature of ⇡�⇡
�1

are the same.

One proof is contained in the following suite of exercises.

Exercises 2.6.16. Consider conjugation by ⇡ 2 Sn.

(a) Let (a1, a2, . . . , ak) 2 Sn be a k-cycle, so the ai are distinct. Show that

⇡ ⇤ (a1, a2, . . . , ak) ⇤ ⇡
�1 =

⇣
⇡(a1),⇡(a2), . . . ,⇡(ak)

⌘

[Consider two cases, b = ⇡(ai) for some i, and b 62 {⇡(a1),⇡(a2), . . .⇡(ak)}.
Explain why this breakdown into two cases makes sense.]

(b) If A and B are disjoint subsets of {1, . . . , n} show that ⇡(A) and ⇡(B) are
also disjoint.

(c) If � = �1�2 · · ·�k is the cycle decomposition of �, find the cycle decomposi-
tion of ⇡�⇡�1 and justify your answer.

(d) Conclude that the conjugation of any � 2 Sn by ⇡ has the same signature
as �.
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2.7 Normality and the First Isomorphism Theorem

Let’s pause for a moment to think about homomorphisms, particularly the spe-
cial cases: injective homomorphisms (one-to-one) and surjective homomorphisms
(onto).

SupposeH is a subgroup of G. There is a injective function fromH to G, which
is called the inclusion map, that simply takes h 2 H to itself, as an element of
G. Since H is a subgroup of G (it’s multiplication is the same as the one on G),
the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that
' : H �! G is an injective homomorpism. Proposition 2.2.5 shows that '(H) is
a subgroup of G. Thus the bijection ' : H �! '(H) is actually a homomorphism
of groups. This shows that the image of an injective homomorphism ' : H �! G

is a subgroup of G that is isomorphic to H. Thus, the study of injective homo-
morphisms is essentially the study of subgroups.

This section and Section 2.9 are focused on surjective homomorphisms, which
are intimately related to subgroups that have a special property, treated in the
next proposition.

Theorem 2.7.1 (Normal Subgroups). Let N be a subgroup of G. The following

are equivalent.

(1) Na = aN for all a 2 G.

(2) aNbN = abN for all a, b 2 G.

(3) aNa
�1
✓ N for all a 2 G.

(4) aNa
�1 = N for all a 2 G.

Proof. We prove a series of implications that shows the conditions are equivalent.
(1) =) (2): (aN)(bN) = a(Nb)N = a(bN)N = (ab)N . Here we have used
asociativity, then the assumption in (1), and finally, NN = N sinceN is a subgroup
of G.
(2) =) (3): Set b = a

�1. Then, using (2), aNa
�1

N = aa
�1

N = eN . In particular,
this shows that aNa

�1
✓ N .

(3) =) (4): For any a 2 G, applying (3) to a
�1, we have that a

�1
Na ✓ N .

Conjugating by a, we get

a(a�1
Na)a�1

✓ aNa
�1

The left hand side is N . Thus, assuming (3) we have both aNa
�1
✓ N and

N ✓ aNa
�1, which proves (4).

(4) =) (1): Multiplying aNa
�1 = N on the right by a gives (1).
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These arguments may seem slippery since they involve computations with sets.
The proofs can also be done elementwise. Consider (4) =) (1). Let a 2 G. Given
any n 2 N , we know ana

�1
2 N , say ana

�1 = n
0. Then an = n

0
a 2 Na. Since

n was arbitrary, aN ✓ Na. The reverse containment is proven analogously, using
a
�1

na 2 N .

Definition 2.7.2. A group satisfying the conditions of the theorem is called nor-
mal. We write N E G for N a normal subgroup of G.

Exercises 2.7.3.

(a) Let H be a subgroup of a group G such that for any a 2 G there is a b

in G such that aH = Hb. (Every left coset is also a right coset, but not
necessarily defined by the same element of G.) Prove that H is normal in G.

Let N be normal in G. Suppose aN = bN and rN = sN . Then a 2 bN and
r 2 sN , so ar 2 bNsN = bsN . By Lemma 2.6.5, arN = bsN . Consequently,
there is a well-defined operation on cosets of N in G that takes the pair (aN, bN)
to abN (it doesn’t matter which element we choose to represent each coset). The
next theorem shows that this gives a group structure on the cosets of N in G.

Theorem 2.7.4. Let N be a normal subgroup of G. Let G/N be the set of cosets

of N in G with the binary operation by aN ⇤ bN = abN . Then G/N is a group.

Proof. We have proven above that the product aNbN is well defined and equal to
abN . Associativity is inherited from associativity of ⇤G (check!). The identity is
eN . The inverse of aN is a�1

N .

We call G/N the quotient of G by N and the homomorphism G �! G/N is
called the quotient map. Some sources call G/N a factor group.

Every subgroup of an abelian group A is normal in A, so for any subgroup B

of A there is quotient group A/B.

Example 2.7.5. In Z the only subgroups are nZ. The quotient group Z/nZ has the
distinct elements a+nZ for a 2 {0, . . . , n� 1}. Clearly this is just another way to
think about the additive group of integers modulo n. It is isomorphic to Zn.

Exercises 2.7.6. Additional properties of normal subgroups.

(a) Let N be a normal subgroup of G. For any subgroup H of G, H \ N is a
normal subgroup of H.

(b) If ' : G �! H is a homomorphism and N is normal in H, then '
�1(N) is

normal in G.

(c) Show that any subgroup of index 2 is normal.
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Exercises 2.7.7. The center of G is the set of elements in G that commute with
all elements of G, Z(G) = {a 2 G : ag = ga for all g 2 G}.

(a) Prove that any subgroup of the center of G, including Z(G) itself, is normal
in G.

(b) Find the center of D4; it is not trivial.

Exercises 2.7.8. Example of normal subgroups.

(a) Find all normal subgroups of D4, D5, and D6.

(b) Find all normal subgroups of A4.

(c) Find all normal subgroups of the quaternions, Q.

Isomorphism and Factor Theorems

We are now in the position to say more about the relationship between homomor-
phisms and normal subgroups.

Theorem 2.7.9 (First Isomorphism). Let ' : G �! H be a surjective homomor-

phism with kernel K. Then K is a normal subgroup of G and G/K is isomorphic

to H.

Proof. First we prove that K is normal by showing aKa
�1
✓ K for all a 2 G. For

any k 2 K,

'(aka�1) = '(a)'(k)'(a�1) = '(a)eH'(a�1) = '(aa�1) = '(eG) = eH

Thus aka�1
2 K.

Let g 2 aK, so g = ak for some k 2 K. Then '(g) = '(a)'(k) = '(a).
Consequently, all elements of a fixed coset of K ahve the same image under ', so
there is a well defined map '̃ : G/K ! H taking aK to '(a).

To show '̃ is a homomorphism, let aK and bK be elements of G/K. Since
K is normal, '̃(aKbK) = '̃(abK) = '(ab) by the definition of multiplication in
G/K and the definition of '̃. Since ' is a homomorphism, '(ab) = '(a)'(b) =
'̃(aK)'̃(bK). thus '̃(aKbK) = '̃(aK)'̃(bK), which shows '̃ is a homomorphism.

Since ' is surjective, for any h 2 H there is some a 2 G such that '(a) = h.
Then '̃(aK) = h, so '̃ is surjective.

To show that '̃ is injective, suppose '̃(aK) = eH . Then '(a) = eH so a 2 K

and aK = eGK. Thus the kernel of '̃ just contains just the identity element of
G/K.

Here is a typical snappy use of the First Isomorphism theorem.
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Theorem 2.7.10. Let G1, G2, . . . Gr be groups and let N1, N2, . . . , Nr be normal

subgroups, Ni EGi. There is a well defined map

(G1 ⇥G2 ⇥ · · ·⇥Gr)/(N1 ⇥N2 ⇥ · · ·⇥Nr) �! (G1/N1)⇥ (G2/N2)⇥ · · ·⇥ (Gr/Nr)

(g1, g2, . . . , gr) (N1 ⇥N2 ⇥ · · ·⇥Nr) 7�! (g1N1, g2N2, . . . grNr)

and it is an isomorphism.

Proof. By the Direct Product Theorem 2.3.4, the projection of G1⇥G2⇥ · · ·⇥Gr

onto Gi is a homomorphism. Composing this with the quotient map Gi �!

Gi/Ni, we get maps G1 ⇥G2 ⇥ · · ·⇥Gr �! Gi/N . Proposition 2.3.6 then gives a
homomorphism

G1 ⇥G2 ⇥ · · ·⇥Gr

'
�! (G1/N1)⇥ (G2/N2)⇥ · · ·⇥ (Gr/Nr),

To be specific, let us show that ' respects products. (g1, g2, . . . , gr) and (g01, g
0

2, . . . , g
0
r)

be elements of G1 ⇥G2 ⇥ · · ·⇥Gr. Then

'

⇣
(g1, g2, . . . , gr) ⇤ (g

0

1, g
0

2, . . . , g
0

r)
⌘
= '

⇣
(g1g

0

1, g2, g
0

2, . . . , grg
0

r)
⌘

= (g1g
0

1N1, g2g
0

2N, . . . , grg
0

rNr)

= (g1N1, g2N2, . . . , grNr) ⇤ (g
0

1N1, g
0

2N2, . . . , g
0

rNr)

= '(g1, g2, . . . , gr) ⇤ '(g
0

1, g
0

2, . . . , g
0

r)

We used, in order, the definition of multiplication in G1 ⇥ G2 ⇥ · · · ⇥ Gr, the
definition of ', the definition of multiplication in G1/N1 ⇥G2/N/2⇥ · · ·⇥Gr/Nr

(and the Ni being normal), and finally, the definition of '.
The kernel of ' is the set of (g1, . . . , gr) such that g1N1, g2N2, . . . , grNr =

N1 ⇥N2 ⇥ · · ·⇥Nr. Each gi must be in Ni. So, the kernel is e1N1 ⇥ e2N2 ⇥ · · ·⇥

erNr. Surjectivity is easy to check, so the first isomorphism theorem now gives
the result.

A generalization of the first isomorphism theorem that we will often use treats
the case when ' : G �! H is not necessarily surjective.

Theorem 2.7.11 (Factor). Let ' : G �! H be a homomorphism of groups with

kernel K. Let N be a normal subgroup of G that is contained in K. Then ' can

be factored into the canonical surjective homomorphism ⇡ : G �! G/N followed

by a homomorphism '̄ : G/N �! H.

By letting N = K we conclude that any homomorphism can be factored into a

surjective homomorphism followed by an injective homomorphism.
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Proof. Define '̃ by gN 7�! '(g). This is well defined because N is contained in
the kernel of ' so for any n 2 N , '(gn) = '(g)'(n) = '(g)eH = '(g). From this
definition it is immediate that '̃ � ⇡ = '.

The proof that '̃ is a homomorphism is similar to the proof of the First Iso-
morphism Theorem.

When N = K, we want to show that '̃ is injective. Suppose ˜'(gN) = eH . By
the definition of '̃, we have '(g) = eH . Thus g 2 K, and therefore gK = eK, the
identity element of G/K.

The Factor Theorem and First Isomorphism Theorem give us a framework for
understanding the material that we have seen earlier. As we said above the group
Zn is just the quotient of Z by its normal subgroup nZ (well isomorphic to it). In
the context of groups we have given a shorthand notation to Z/nZ, calling it Zn.

Recall that Proposition 2.2.4 says that given any group G and g 2 G there is
a homomorphism Z �! G taking 1 to g. If g has infinite order then the cyclic
group, hgi, is isomorphic to Z. If g has finite order n then the factor theorem says
that Zn is isomorphic to hgi via the homomorphism taking 1 (in Zn) to g.
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2.8 More Examples of Groups

Before continuing the theoretical development we introduce a few more interesting
families of groups. The first set are abelian, derived from the number systems
discussed in Section 1.2. The second family is matrix groups, which are (generally)
non-abelian.

Groups from Familiar Number Systems

We have already treated the additive group of the integers, Z as well as its sub-
groups nZ. We have also used the integers modulo n, which we can now identify
as the quotient group of Z by its subgroup nZ. As pointed out in Section 1.2,
the additive group of the fields Q (rational numbers), R (real numbers) and C
(complex numbers) are abelian groups. They are complicated as groups because
they are not finitely generated. The next exercise shows that the quotient Q/Z is
interesting; every element has finite order, but the group is not finitely generated.

Exercises 2.8.1.

(a) Consider the group Q/Z. Show that every element has finite order.

(b) On a number line, sketch a region that contains one element for each equiv-
alence class of Q/Z.

(c) Show that for any integer n there is an element of order n in Q/Z.
(d) How many elements of order n are there in Q/Z?
(e) Show that for any finite set {r1, r2, . . . , rt} of rational numbers,

hr1 + Z, r2 + Z, . . . , rt + Zi 6= Q/Z

This shows that the group Q/Z is not finitely generated.

We can also consider the multiplicative groups from familiar number systems.

Example 2.8.2. As we noted in Section 1.1 there is both an additive and a multi-
plicative structure Z/n, to the integers modulo n. For an integer a that is comprime
to n there are integers u, v such that ua + nv = 1 by the GCD theorem. Then u

is the multiplicative inverse of a modulo n. The converse is also true, if a + nZ
has multiplicative inverse u+ nZ then ua di↵ers from a multiple of n by 1, so the
GCD of a and n is 1. The set of units in Zn, is the set of those elements with a
multiplicative inverse. One can check that this set forms an abelian group under
multiplication, written Un: 1 is the identity element, every element has an inverse
by definition, the product of two units is also a unit (with (ab)�1 = a

�1
b
�1), and

multiplication is associative and commutative.
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For a prime number p, every nonzero element in Z/p is a unit, so Z/p is a field.
When considering it as a field we will write it Fp.

Exercises 2.8.3.

(a) Prove that Aut(Zn) ⇠= Un, the group of units in Zn.

(b) We will prove in Section 3.2 that every finite abelian group is isomorphic to
a cyclic group or a direct product of such. For each of n = 8, 9, 10, 11, 12
find the product of cyclic groups that is isomorphic to Un.

Returning to the fields Q, R, C, we now consider their multiplicative groups
Q⇤, R⇤, and C⇤.

Example 2.8.4. In Q⇤, the subgroup generated by 2 is
�
2i : i 2 Z

 
. The subgroup

generated by 2 and 2 is h2, 3i =
�
2i3j : i, j 2 Z

 
. There is only one element of

finite order in Q⇤, other than the identity element, namely �1, which has order 2.
Similarly the only non-identity element of R⇤ which has finite order is �1. To

get elements of order n we are, in e↵ect, looking for solutions of xn�1, that is nth
roots of unity. These live in the complex number field C.
Exercises 2.8.5. An isomorpism between an additive group and a multiplicative
group.

(a) Show that there is a homomorphism from Q,+ to C⇤
, ⇤, namely a 7�! e

a2⇡i.

(b) Show that the image is the set of all nth roots of unity (for n 2 N) and that
this forms a subgroup of C⇤ under multiplication.

(c) What is the kernel?

Exercises 2.8.6.

(a) Show that the positive rational numbers Q⇤⇤ = {a 2 Q : a > 0} form a sub-
group of Q⇤.

(b) Show that Q⇤ is isomorphic to the direct product of Q⇤⇤ and h�1i.

(c) Extend this result to the multiplicative group of the real numbers, R⇤.

Matrix Groups

We will work primarily with matrix groups over the fields, Q, R, C and Fp, but
the general results below are true for any field, so we express them for a general
field F . We denote the multiplicative group of F by F

⇤.

Definition 2.8.7. Let F be a field and let n be an integer. The set of n⇥nmatrices
over F with nonzero determinant is called the General Linear Group and is
written GLn(F ). The subgroup consisting of the matrices with determinant 1 is
the Special Linear Group and is written SLn(F ). The next proposition shows
that these are indeed groups with the identity matrix, In as identity element.
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Proposition 2.8.8. Let F be a field and let n be an integer. The set of n ⇥

n matrices over F with nonzero determinant forms a group. The determinant

function

det : GLn(F ) �! F

is a homomorphism, and its kernel is SLn(F ).

Proof. Matrix multiplication is associative: One can show that for n⇥ n matrices
A,B,C, the i, j component of the product of A(BC) and of (AB)C is

nX

s=1

nX

t=1

aisbstctj

Thus A(BC) = (AB)C. (Associativity holds for any product of matrices that is
well defined. We are treating the special case where they are all square of the same
dimension.)

The result from linear algebra (which we assume here) that the determinant of
a product of two matrices is the product of their determinants shows, in particu-
lar, that the product of two matrices with nonzero determinant also has nonzero
determinant. So GLn(F ) is closed under multiplication. The identity matrix, In,
and the usual formula for the inverse of a matrix perform the expected roles to
make GLn(F ) a group. The determinant function respects products, so it gives a
homomorphism to F . The kernel is the subgroup of matrices with determinant 1,
that is SLn(F ).

Exercises 2.8.9. There are many interesting subgroups of the general linear group.

(a) Show that the general linear group has these subgroups:

• The diagonal matrices with nonzero entries on the diagonal.

• The matrices of the form aIn for a 2 F are called the constant diagonal
matrices. Taking a nonzero we get the subgroup F

⇤
In of GLn(F ). Show

that F ⇤
In is the center of GLn(F ) when n > 1.

• The upper triangular matrices with nonzero entries on the diagonal.

• The orthogonal group O(n, F ) is the group of matrices Q such that
Q

�1 is the transpose of Q.

(b) For any subgroup H of F ⇤ the set of all matrices with determinant in H is
a subgroup of GL(n, F ).

There are two other matrix groups of particular interest. In the exercises above,
it is claimed that, for n > 1, the constant diagonal matrices, F ⇤

In form the center
of GLn(F ). In particular F ⇤

In is normal in GLn(F ).
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Definition 2.8.10. The quotient group GLn(F )/F ⇤
In is called the Projective

General Linear Group and is written PGLn(F ). The quotient group SLn(F )/
⇣
F

⇤
In\

SLn(F )
⌘
is called theProjective Special Linear Group and is written PSLn(F ).

Exercises 2.8.11.

(a) Show that the subgroup of upper triangular 2 ⇥ 2 matrices is conjugate to

the group of lower triangular matrices. [Hint:


0 1
1 0

�
.]

(b) Show that the set of matrices with nonzero determinant of the form


0 a

b c

�

is a coset of the upper triangular matrices.

Example 2.8.12. In GL(2,C) consider the matrices

I =


1 0
0 1

�
A =


i 0
0 �i

�
B =


0 1
�1 0

�
C =


0 i

i 0

�

The set of matrices Q = {±I,±A,±B,±C} is called the quaternion matrix group.

Exercises 2.8.13.

(a) Show by brute force that the quaternion matrix group is indeed a group.

(b) Find the order of each element of Q.

(c) Show that no two of the groups Z2 ⇥ Z2 ⇥ Z2, Z4 ⇥ Z2, Z8, D4, and Q are
isomorphic. [Investigate the number of elements of order 4.]

Exercises 2.8.14.

(a) Show thatD4 is isomorphic to the matrix group with elements {±I,±A,±B,±C}

where

I =


1 0
0 1

�
A =


0 1
�1 0

�
B =


1 0
0 �1

�
C =


0 1
1 0

�

(b) Draw the lattice diagram for this matrix group (it looks just like D4, but
use the elements here).

(c) More generally find a subgroup of GL2(R) that is isomorphic to Dn. (Re-
member your trigonometry.)

Another interesting class of matrices is permutation matrices. Let � 2 Sn.
Consider the matrix P

� that has a single 1 in each column with the other entries
being 0, specifically, P �

i,�(i) = 1. Notice that P
� can be considered as a matrix

over any field F . For v 2 F
n, and i 2 {1, . . . , n} the �(i) component of the vector

P
�(v) is vi. So, P � permutes the components of v. Another way to say this is

that the ith component of P �(v) is v��1(i).
In particular, the null space of P � is trivial, so P

�
2 GLn(F ).
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Proposition 2.8.15. The function from Sn to GLn(F ) taking � to P
�

is an

injective homomorphism.

Proof. We must check that P ⇡
P

� = P
⇡�, which we do by verifying that for any v 2

F
n, the ith components of P ⇡

�
P

�(v)
�
= P

⇡�(v) are the same. The ith component
of P ⇡�(v) is v(⇡�)�1(i). The ith component of P ⇡

�
P

�(v)
�
is the ⇡

�1(i) component

of P �(v), which is the �
�1
�
⇡
�1(i)

�
component of v. Since ⇡� = �

�1
⇡
�1, the two

matrices P ⇡
P

� and P
⇡� are giving the same answer.

Injectivity is clear because the only permutation � such that p
� takes each

basis vector to itself is the identity permutation.
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2.9 Structure in the Quotient Group:
The Third Isomorphism Theorem and the Corre-
spondence Theorem

The next step is to understand the structure of a quotient group. The two main
results—the third isomorphism theorem and the correspondence theorem—have
fairly simple statements, which obscure some subtle issues. The proof of the third
isomorphism theorem is a consequence of the first isomorphism theorem.

Theorem 2.9.1 (Third Isomorphism). Let N and K be normal subgroups of G

with K contained in N . Then N/K is a normal subgroup of G/K and

(G/K)

(N/K)
⇠= G/N.

Proof. We have two well defined quotient groups of G: G/K and G/N . I claim
that there is a well-defined function from G/K to G/N taking gK to gN . To prove
this, we have to check that if two cosets aK and bK are equal then the cosets aN
and bN are also equal. Suppose aK = bK. Then a

�1
b 2 K and since K ✓ N we

have a
�1

b 2 N . Consequently aN = bN , so there is a function taking aK to aN .
It is easy to check that the function ' : G/K �! G/N defined above is

surjective and a homomorphism. Given any gN there is an element, namely gK,
that clearly maps to it, '(gK) = gN , so we get surjectivity. Finally, ' respects
multiplication: '(gK ⇤ g0K) = '(gg0K) = gg

0
N = gN ⇤ g

0
N = '(gK) ⇤ '(g0K)

The kernel of ' is {gK : gN = eN}. But gN = eN if and only if g 2 N . So the
kernel is N/K. Applying the First Isomorphism Theorem 2.7.9 to ' : G/K �!

G/N ,
(G/K)

(N/K)
⇠= G/N.

The more powerful theorem is the correspondence theorem, which we may be
seen as a strengthening of the First Isomorphism Theorem. Before stating it, let
us recall some simple facts about functions. Let f : X ! Y and let A ✓ X and
B ✓ Y . Then A ✓ f

�1(f(A)) because for any a 2 A, a 2 f
�1(f(a). On the other

hand, for an element b 2 B, if x is a preimage of b then f(x) = b, but there may
be no preimage for b, so we know only that f(f�1(B)) ✓ B. But, if f is surjective
then for each b 2 B there is some x 2 X such that f(x) = b. Thus for f surjective,
f(f�1(B)) = B. Respecting containment is also immediate: If A ✓ A

0
✓ X then

f(A) ✓ f(A0) and similarly if B ✓ B
0
✓ Y then f

�1(B) ✓ f
�1(B0).
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Theorem 2.9.2 (Correspondence). Let ' : G �! H be a surjective homomor-

phism with kernel K. There is a one-to-one correspondence, given by ', between

subgroups of G/K and subgroups of G containing K.

G �! H

A ! '(A)

'
�1(B) ! B

The correspondence respects containment, normality, and quotients as follows. For

A,A
0
containing K,

• K  A  A
0
if and only if '(A)  '(A0).

• A is normal in G if and only if '(A) is normal in H.

• When A is normal in G, the map ' induces an isomorphism G/A ⇠= H/'(A).

Proof. Let A be a subgroup of G containingK and let B be a subgroup ofH. From
Proposition 2.2.5 we know that '(A) is a subgroup of H and '

�1(B) is a subgroup
of G. Based on the above discussion, we know '('�1(B)) = B and A ✓ '

�1('(A)
so we need to show that '�1('(A)) ✓ A to get the one-to-one correspondence. Let
g 2 '

�1('(A)). Then '(g) = '(a) for some a 2 A. Consequently, '(ga�1) = eH

and therefore ga
�1
2 ker(') = K. Since K ✓ A, ga�1

2 A so g 2 A. Thus
'
�1('(A)) = A. Thus, we have established the one-to-one correspondence.
We have also shown in a problem in Exercise 2.7.6 that if B is normal in H

then '
�1(B) is normal. These results are true for an arbitrary homomorphism.

Let’s now show that when ' is surjective, if A is normal in G then '(A) is normal
in H.

Let h 2 H. We need to show h'(A)h�1 = '(A), or equivalently, h'(a)h�1
2

'(A) for all a 2 A. Since ' is surjective, there is some g 2 G such that '(g) = h.

h'(a)h�1 = '(g)'(a)'(g)�1 = '(gag�1) 2 '(A)

The last step holds because A is normal in G, so gag
�1
2 A.

Now we apply the first isomorphism theorem. Let B be normal in H. We have
a composition of surjective homomorphisms

G �! H �! H/B

whose kernel is '�1(B). Letting A = '
�1(B), the first isomorphism theorem says

that G/A ⇠= H/'(A).
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We can derive the Third Isomorphism Theorem as a corollary of the Corre-
spondence Theorem.

Corollary 2.9.3 (Third Isomorphism Theorem). Let KN and N be normal sub-

groups of G with K  N . Then G/N ⇠= (G/K)
.
(N/K).

Proof. Apply the correspondence theorem to G �! G/K. The subgroup N of G

corresponds to the subgroup N/K of G/K. Thus G/N ⇠= (G/K)
.
(N/K).

The Third Isomorphism Theorem gives a framework for understanding the
lattices of subgroups

ADD EXAMPLES
Zn

Z4 ⇥ Z4

Exercises 2.9.4. For each of the following groups G and for each of the normal
subgroups N E G, identify the sublattice of the G that has the same structure as
the lattice of the quotient group G/N .

(a) D4

(b) A4

76



2.10 Problems

Exercises 2.10.1. Define a hemigroup to be a set G with an operation ⇤ that is
associative, has an identity element, and such that each element has a right inverse.

(a) Show that the right inverse of a is also a left inverse of a, so that a hemigroup
is actually a group.

Exercises 2.10.2. Let (Un, ⇤) be the group of invertible elements of Zn. Find all n
such that (Un, ⇤) is isomorphic to

(a) (Z2,+);

(b) (Z4,+);

(c) (Z2 ⇥ Z2,+).

Exercises 2.10.3. Some subgroups of abelian groups. Let A be an abelian group
and let m be an integer.

(a) Show that multiplication by m gives a homomorphism of A:

'm : A �! A

a �! ma

(b) Show that the image and kernel are the groups mA and A[m] from Exer-
cise 2.1.19.

(c) If A is a finite group that has no elements of order m then multiplication by
m gives an isomorphism of A.

(d) If m and n are coprime show that A[m] \A[n] = {0}.

Exercises 2.10.4. The torsion subgroup of an abelian group. Let A be an infinite
abelian group. Let Tor(A) be the set of elements with finite order, which is called
the torsion subgroup of A.

(a) Show that Tor(A) is, indeed, a normal subgroup of A.

(b) Show that Tor(A) =
S

m2NA[m]. (Note that, even inside an abelian group,
the union of subgroups is not usually a group!)

(c) Show that Tor(A/Tor(A)) is trivial. That is, letting T = Tor(A), the only
element of finite order in A/T is the identity element, e+ T .

(d) Give an example of a finitely generated abelian group in which the identity
element together with the elements of infinite order do not form a subgroup.
(As opposed to the torsion subgroup.)

Exercises 2.10.5. “Almost” abelian groups. A group is metabelian when it
has a normal subgroup N such that N and G/N are both abelian. A group is

77



metacyclic when it has a normal subgroup N such that N and G/N are both
cyclic.

(a) Show that S3 is metacyclic.

(b) Show that A4 is metabelian but not metacyclic.

(c) Prove that any subgroup of a metabelian group is also metabelian.

(d) Prove that any quotient group of a metabelian group is metabelian. [Look
carefully at the proof of the 2nd isomorphism theorem and adapt it to this
question.]

Exercises 2.10.6. A matrix group. Let G be the group of all matrices of the form
with a, b, c 2 Q. 2

4
1 a b

0 1 c

0 0 1

3

5

(a) Find the center C of G and show that C is isomorphic to the additive
group Q.

(b) Show that G/C is isomorphic to Q⇥Q.

(c) Conclude that G is metabelian.

Exercises 2.10.7. Let H = H(F ) be the set of 3 by 3 upper triangular matrices
over a field F with 1s on the diagonal.

(a) Give a brief explanation of why this is indeed a subgroup of GL(3, F ).

(b) Show that the following 3 types of matrices generate this group.

2

4
1 a 0
0 1 0
0 0 1

3

5 ,

2

4
1 0 c

0 1 0
0 0 1

3

5 ,

2

4
1 0 0
0 1 b

0 0 1

3

5

(c) Let F = Fp. Explain why H is then generated by 3 matrices, those in the
form above with a = b = c = 1.

(d) Show that H(F2) ⇠= D4.

(e) (HW) Show that the center Z(H) consists of all matrices of the form2

4
1 0 c

0 1 0
0 0 1

3

5. Furthermore Z(H) ⇠= (F,+).

(f) (HW) Show that H/Z(H) is isomorphic to F ⇥ F .

(g) (HW) Conclude that H is metabelian.

Exercises 2.10.8. Upper triangular matrices.

78



(a) Let F be a field and let F ⇤ be its multiplicative group. Show that there is a
homomorphism

{upper triangular matrices in GL(2, F )} �! (F ⇤)2

a b

0 c

�
7�! (a, c)

(b) Show that kernel is isomorphic to (F,+) the additive group of F .

Exercises 2.10.9. General linear group.

(a) Which has more elements, unit group of Mat(2,Z/4) or GL(2,F4)? Find the
number of elements in each and characterize U(Mat(2,Z4).

(b) Try to generalize: How many elements are there in GL(n,Fp)? In SL(n,Fp)?

Exercises 2.10.10. Some normal subgroups

(a) Show that the intersection of two normal subgroups of G is normal in G.

(b) Let G be a group, possibly infinite. Let I be some indexing set and for each
i 2 I let Hi be a subgroup of G. Prove that for any a 2 G,

a

⇣\

i2I

Hi

⌘
a
�1 =

\

i2I

aHia
�1

(c) Let H be a subgroup of G and let N =
T

g2G
g
�1

Hg. Prove that N is normal
in G.

(d) Let n 2 N and let K be the intersection of all subgroups of G of order n.
Prove that K is normal in G.

An earlier exercise showed that every group of index 2 is normal. Here is a
generalization due to Lam [MAA Monthly Mar. 2004 p. 256].

Theorem 2.10.11. Let H be a subgroup of G with [G : H] = p a prime number.

The following are equivalent.

(1) H is normal in G.

(2) For any a 2 G \H, a
p
2 H.

(3) For any a 2 G \ H, a
n
2 H for some positive integer n that has no prime

divisor less than p.

(4) For any a 2 G�H, a
2
, a

3
, . . . , a

p�1
62 H.

Exercises 2.10.12.
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(a) Prove Lam’s theorem by showing (1) =) (2) =) (3) =) (4) =) (1). The
last step is the one requiring some cleverness.

(b) Show that Lam’s theorem implies that any group whose index is the smallest
prime dividing |G| is normal in G.

Exercises 2.10.13. Inner automorphisms of a group. For a 2 G let 'a be the inner
automorphism defined by a and consider the function ' : a 7�! 'a.

'a : G �! G ' : G �! Aut(G)

g 7�! aga
�1

a 7�! 'a

Clearly im(') = Inn(G).

(a) Show that Inn(G) is a normal subgroup of Aut(G).

(b) Show that ' is a homomorphism and that im(') ⇠= G/Z(G).

Exercises 2.10.14. Computing some simple automorphism groups.

(a) Compute Aut(Q) for Q the quaternion matrix group.

(b) Show that Aut(D4) ⇠= D4

Exercises 2.10.15. Automorphism group of Z/pn.
(a) Prove that Aut(F2

p) ⇠= GL(2,Fp) for p prime.

(b) Find an element of Aut(F4 ⇥ F4) that is not in GL(2,F4).

Exercises 2.10.16. Classification of the groups of order 8. Let G be a group of
order 8. Prove each of the following.

(a) If G has an element of order 8 then G ⇠= Z8.

(b) If every nonzero element of G has order 2 then G is abelian and isomorphic
to Z8.

(c) Suppose G has no element of order 8 and some element a 2 G has order 4.

• If G is abelian then it is isomorphic to Z4 ⇥ Z2.

• NEED TO FINISH! If G

Exercises 2.10.17. Symmetries of a solid.

(a) Enumerate the faces of a tetrahedron as follows. Each rigid motion from
the tetrahedron to itself defines a permutation of the vertices. There are 12
such permutations. Write them down in an organized fashion, and briefly
describe each.

(b) Enumerate the faces of a cube as follows. Each rigid motion from the cube to
itself defines a permutation of the vertices. There are 24 such permutations.
Write them down in an organized fashion, and briefly describe each.

Exercises 2.10.18. Counting in Sn.
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(a) How many k-cycles are there in Sn?

(b) How many product of disjoint transpositions are there in Sn?

Exercises 2.10.19.

(a) Let A1, A2, B1, B2 be normal subgroups of a group G with B1  A1 and
B2  A2 and finally A1\A2 = {1}. Then B1B2 is normal subgroup in A1A2

and there holds

(A1A2)/(B1B2) ⇠= (A1/B1)� (A2/B2).

v

Exercises 2.10.20. The normalizer and centralizer of a subgroup. Let K be a
subgroup of G and define

NG(K) =
�
g 2 G : gKg

�1 = K
 

CG(K) =
�
g 2 G : gkg�1 = k for all k 2 K

 

These are called the normalizer ofK in G and the centralizer ofK in G.

(a) Show that NG(K) is a subgroup of G.

(b) Show that K is a normal subgroup of NG(K).

(c) If H  G and K is a normal subgroup of H show that H  NG(H). So,
NG(K) is the largest subgroup of G in which K is normal.

(d) Show that CG(K) is a normal subgroup of NG(K).

(e) Show that NG(K)/CG(K) is isomorphic to a subgroup of Aut(K).

Exercises 2.10.21. The commutator subgroup. In a group G, the commutator of
a, b is aba

�1
b
�1. Notice that this is eG i↵ a and b commute. The commutator

subgroup of a group G is the group G
0 generated by the commutators.

G
0 = haba�b�1 : a, b 2 Gi

(a) Compute the commutator subgroup of Dn (two cases: n odd and n even).
Think of Dn as generated by r, t with r

n = t
2 = e and tr = r

n�1
t.

(b) Write down the commutator of the conjugation of a by x and the conjugation
of b by x.

(c) Prove that G
0 is a normal subgroup of G. It is enough to show that the

conjugation of any commutator is another commutator.

(d) Prove that G/G
0 is abelian.
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(e) Prove that G/N abelian implies G
0
 N . So, the commutator subgroup of

G is the smallest normal subgroup N group such that the quotient G/N is
abelian.

Exercises 2.10.22. Let G be a group. For a, b 2 G define the commutator [a, b] :=
aba

�1
b
�1 of a and b. For arbitrary subgroups U, V of G define [U, V ] := h[u, v] |

u 2 U, v 2 V i. Now show the following:

(a) If U, V are normal subgroups of G, then so is [U, V ].

(b) [G,G] is the smallest normal subgroup of G for which the quotient group is
abelian.

(c) Setting G
(0) := G and G

(i) := [G(i�1)
, G

(i�1)] for all i 2 N, we find that G is
solvable if and only if there exists n 2 N such that G(n) = {1}.

(d) For n � 5 let U be a subgroup of Sn and N a normal subgroup of U for
which U/N is abelian. Show that if U contains all 3-cycles of Sn, then also
N will contain these.
Hint: If a, b, c, d, e 2 {1, . . . , n} are distinct elements, then there holds the
equation

(a, b, c) = (a, b, d)(c, e, a)(d, b, a)(a, e, c).

(e) Show that this implies that the symmetric group Sn is not solvable for n � 5.

82



Chapter 3

Classification and Structure of
Groups

3.1 Interaction between Two Subgroups:
The Second Isomorphism Theorem and Semi-Direct
Products

We now consider two subgroups of a group G and prove several results about the
interaction between them. At first we make no additional assumptions on the two
subgroups groups, then we assume that one is normal in G, and finally that both
are. The main result is the second isomorphism theorem. But,we also get two key
corollaries that introduce the notion of an internal direct product (as opposed to
the external direct product that we have been using), and the more general notion
of a semi-direct product (both internal and external).

Lemma 3.1.1. Let K,H be subgroups of G. The following are equivalent:

(1) G = KH and K \H = {eG}

(2) Every element of G can be uniquely written as kh for k 2 K and h 2 H.

Proof. G = KH is equivalent to saying that every element of G can be written
in the form kh. We’ll next show K \H = {eG} if and only if any expression for
g 2 G as a product kh, with k 2 K and h 2 H, is unique.

Suppose K \ H = {eG} and k1h1 = k2h2. Then k
�1
1 k2 = h1h

�1
2 . Since this

is in both K and in H, it must be the identity. Therefore, h1 = h2 and k1 = k2,
which proves uniqueness.
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Now suppose that K \ H 6= eG; say g 2 K \ H is not equal to eG. Setting
h = g and k = eG gives one way to express g in the form kh, while setting h = eG

and k = g gives a di↵erent way. Thus we have non-uniqueness.

As another prelude to the second isomorphism theorem we have the following
lemma. We will use a concise argument to prove a subset B of a group G is a
subgroup. We show that B�1

✓ B (closure under inversion) and BB ✓ B (closure
under products).

Lemma 3.1.2. Let H,K be subgroups of G.

HK = KH () KH is a subgroup of G

Proof. Suppose HK = KH we will show KH is a subgroup of G. We see KH

is closed under inversion: (kh)�1 = h
�1

k
�1
2 HK = KH. We can show that

KH is also closed under products with an element-wise argument, but let’s use
the associativity identified in Notation 2.6.1,

(KH)(KH) = K(HK)H = K(KH)H = (KK)(HH) = KH.

Since KH is closed under inversion and under products, it is a subgroup of G.
Suppose KH is a subgroup of G. Since KH is closed under inversion, KH =

(KH)�1 = H
�1

K
�1 = HK. This gives the reverse implication of the lemma.

Suppose now that H,N are subgroups of G with N normal in G. We can
conclude the following.

• HN = NH since gN = Ng for any g 2 G.

• HN is therefore a subgroup of G by the lemma.

• N is normal in HN , since it is normal in any subgroup of G that contains it.

Theorem 3.1.3 (Second Isomorphism). Let N be normal in G and H a subgroup

of G. Then HN \N is normal in H and H/(H \N) ⇠= HN/N .

When these groups are finite we may take cardinalities to get

|H||N | = |HN ||H \N |

Proof. Consider G
⇡
�! G/N restricted to the subgroup H, and call the restricted

homomorphism ⇡
0 : H �! G/N . The kernel of ⇡

0 is H \ N . The image is
HN/N = {hN : h 2 H} and HN is a subgroup of G as we noted above. By the
first isomorphism theorem, H/(H \N) ⇠= HN/N .
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The following special case is of interest. It combines the assumptions of Theo-
rem 3.1.3 with those of Lemma 3.1.1.

Corollary 3.1.4. Let H and N be subgroups of G with N EG. Suppose G = HN

and H \N = {eG}. Then G/N ⇠= H.

Proof. One simply substitutes G for HN and notes H ⇠= H/heGi.

Definition 3.1.5. In the situation of the corollary we say that G is the internal
semi-direct product of N by H and we write G ⇠= N oH.

Note that the order is important: NoH and HoN mean two di↵erent things.
The first assumes N is normal in G and the second assumes H is normal in G.

If both H and N are normal then the two semidirect products are isomorphic
to each other and to the direct product, as the following corollary shows.

Corollary 3.1.6. Suppose K EG and N EG and G = KN and K \N = {eG}.

Then elements of K and N commute: for any k 2 K and n 2 N , kn = nk.

Furthermore, G ⇠= K ⇥N .

Proof. To prove that elements of K and N commute with each other it is su�-
cient to show that knk

�1
n
�1 = e. Since N is normal, knk�1

2 N and therefore
knk

�1
n
�1
2 N . Similarly, since K is normal, nk�1

n
�1
2 K so knk

�1
n
�1
2 K.

Now K \N = {e} gives the result.

Consider the map K ⇥ N
'
�! G defined by (k, n) 7�! kn. The map is well

defined. It is injective since kn = e gives k = n
�1
2 K \N = {e}. It is surjective

since G = KN . It respects multiplication (so is a homomorphism):

'
�
(k1, n1)

�
'
�
(k2, n2)

�
= (k1n1)(k2n2)

= k1(n1k2)n2

= k1(k2n1)n2

= (k1k2)(n1n2)

= '
�
(k1k2, n1n2)

�

= '
�
(k1, n1)(k2, n2)

�

Thus ' is an isomorphism.

Definition 3.1.7. In the situation of the last corollary, G is often called the
internal direct product of K and N .
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The distinction between internal direct product and the usual (external) direct
product of two arbitrary groups G and H is subtle as the next examples show.
The first example shows that the external direct product of two groups is also
the internal direct product of two of its subgroups (in a way that seems perhaps
pedantic). The second example shows the real motivation for distinguishing inter-
nal direct products, they can be rather hidden, and give insight into the structure
of a group.

Example 3.1.8. Let G and H be two groups and consider the external direct prod-
uct G⇥H. Let G = G⇥ {eH} and similarly H = {eG}⇥H. The interesection of
G and H is the identity element of G⇥H and it is easy to see that every element
of G⇥H may be written as a product of something in G and H. Thus G⇥H is
the internal direct product of G and H.

Example 3.1.9. Consider Z6. It has two proper subgroups K = {0, 3} and N =
{0, 2, 4} both of which are normal since Z6 is abelian. It can be seen that everything
in Z6 can be written as a sum of something in K and something in N , and clearly
K \ N = {0}. Thus Z6 is the internal direct product of H and K. Of course,
in Z6, the subgroup {0, 3} is isomorphic to Z2, and {0, 2, 4} is isomorphic to Z3

and we know from Corollary 2.4.29 that Z6 is isomorphic to the external direct
product Z2 ⇥ Z3. More generally, for m and n coprime, Zmn is the internal direct
product of its subgroups hmi and hni.

One can also define the external semi-direct product of of two groups.

Definition 3.1.10. Let N , H be two groups and let ' : H �! Aut(N) be a
homomorphism. Write '(h) as 'h. Define a new group with elements N ⇥H and
multiplication defined by

(n1, h1) ⇤ (n2, h2) = (n1'h1(n2), h1, h2)

This is the external semi-direct product of N and H defined by ' and is
written N o' H.

The relationship between the internal and external semi-direct product is even
more subtle than that for the internal and external direct product. Consider a
group G with two subgroups N,H with N normal and H not normal and such
that NH = G and N \ H = {e}. There is a bijective map from the Cartesian
product N ⇥H to G taking (n, h) to nh. It is not a homomorphism. But it is true
that in G,

n1h1n2h2 = n1h1n2h
�1
1 h1h2

= n1'h1(n2)h1h2
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Where 'h1 is conjugation by h1. Because N is normal in G, 'h is an automorphism
of N and, indeed, we have a homomorphism ' : H �! Aut(N) that takes h to
'h. Thus, if we use ' to to define the external semi-direct product N E'H we get
an isomorphism with G.

Exercises 3.1.11. The definition of external semi-direct product makes sense!

(a) Verify that (eH , eK) is the identity element.

(b) Show that each element does have an inverse.

(c) Show that the associative law holds.

Exercises 3.1.12. Verify the following are semi-direct products.

(a) Dn
⇠= Cn o' C2 where ' : C2 �! Aut(Cn) takes the non-identity element of

C2 to the automorphism of Cn taking n to n
�1.

(b) Sn = An o h(1, 2)i. What is the map '?

(c) S4 = V oS3 where V is Klein-4 subgroup with elements of the form (a, b)(c, d)
with a, b, c, d distinct elements of {1, 2, 3, 4}. What is the map '?

(d) In GLn(F ), for F a field, let T be the upper triangular matrices with nonzeros
on the diagonal; let U be the upper triangular matrices with 1’s on the
diagonal and let D be the diagonal matrices with nonzero elements on the
diagonal. For n = 2, show that T = U o D. Describe the map ' : D �!
Aut(U).

(e) Do the previous problem for arbitrary n.

Proposition 3.1.13. Let N be a normal subgroup of G and let ⇡ : G �! G/N be

the quotient homomorphism. Suppose that there is a homomorphism ↵ : G/N �!

G such that ⇡ � ↵ is the identity map on G/N . Then G is the internal direct

product N o ↵(G/N).

Proof. Let the image of ↵ be H = ↵(G/N), which is a subgroup of G. By Corol-
lary 3.1.4, we need only show that HN = G and that H \N is trivial.

Let g 2 G. Let h = ↵ � ⇡(g). This is an element of H, since it is in the image
of ↵. I claim gh

�1
2 N . This is because

⇡(gh�1) = ⇡(g)⇡(h�1) = ⇡(g)⇡
�
↵ � ⇡(g�1)

�
= ⇡(g)

�
⇡ � ↵ � ⇡

�
(g�1)

�

= ⇡(g)(⇡(g�1)
�
= ⇡(g)⇡(g�1) = eN

Consequently gh
�1 = n for some n 2 N and therefor g = hn. Since g was an

arbitrary element of G we have shown G = HN .
Now suppose that h 2 H \ N . Since h 2 H, there is some gN 2 G/N such

that h = ↵(gN). We know that ⇡ � ↵ is the identity on H, so

↵

⇣
⇡
�
↵(g)

�⌘
=
�
↵ � ⇡

��
↵(g)

�
= ↵(g) = h.
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On the other hand, since h 2 N ,

↵

⇣
⇡
�
↵(g)

�⌘
= ↵

�
⇡(h)

�
= ↵(eN) = e.

Consequently, h = e and we have shown H \N = {e}.

Exercises 3.1.14. Let F be a field. Let GLn(F ) be the general linear group: n⇥n

matrices over F with nonzero determinant. Let SLn(F )) be the special linear
group: matrices with determinant 1. Let F

⇤
I be the nonzero multiples of the

identity matrix. In this problem we investigate the finite fields F and values of n
for which GLn(F ) ⇠= SLn(F )⇥ F

⇤
I.

(a) For the fields F = F3 and F = F5, show that GLn(F ) is a direct product as
above for n odd, but not for n even.

(b) For the field F = F7, show that GLn(F ) is a direct product as above for n

coprime to 6, and is not otherwise.

(c) (Challenge) For which fields Fq and which n is GLn(Fq) a direct product as
above?

Exercises 3.1.15. External semi-direct products of cyclic groups.

(a) Use the definition of external semi-direct product to create the other non-
abelian group of order 12 (besides D6 and A4), Z3o'Z4 where ' is the only
possible map Z4 �! Aut(Z3) that is not trivial. Let a be the generator for
Z3 and b the generator for Z4. Show the following:

(1) Every element can be represented uniquely as aibj for i 2 {0, 1, 2} and
b 2 {0, 1, 2, 3}

(2) The group can be presented as ha, b|a3 = b
4 = 1, ba = a

2
bi

(3) Find the inverse of aibj .

(4) Find a general formula for a
i
b
j
⇤ a

m
b
n. It may be useful to break this

into cases.

(b) Use the definition of external semi-direct product to create the only non-
abelian group of order 21 (the smallest non-abelian group of odd order),
Z7 o Z3. Let a be the generator for Z7 and b the generator for Z3. Show
how to represent, invert, and multiply elements of this group as you did in
the previous problem.

(c) (Challenge Problem) Use the definition of external semi-direct product to
construct semi-direct products Zm o Zn. You will need to start with a
homomorphism ' : Zn �! Aut(Zm). See how many of the small non-abelian
groups you can find in the table of small abelian groups on Wikipedia.
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3.2 Finitely Generated Abelian Groups

In this section we show that the structure of finitely generated abelian groups
is fairly simple. Any finitely generated abelian group is isomorphic to a direct
product of cyclic groups that can be put in a standard, uniquely determined,
format. We proceed in several steps, each subsection below gives a complete story
about a particular class of abelian groups; each extends the result of the previous
subsection to a broader class of abelian groups.

Our first step is to show that a direct product of cyclic groups can be put into a
standard format that elucidates its structure. There are actually two such formats,
one using elementary divisors and the other using invariant factors. In particular,
two groups are isomorphic if and only if their standard formats are the same. Our
next step is to show that any finite abelian group is actually a direct product of
cyclic groups, and it therefore can be placed in the two standard formats. This
result has one very technical lemma whose proof we sketch. Finally, we state and
prove some aspects of the more general result that any finitely generated abelian

group can be written as a direct product of a finite group (with standard formats
above) and a group that is isomorphic to Zr for some integer r.

We will write the group operation additively. For A an abelian group, a 2 A,
and m an integer, we write mA for a + · · · + a with m summands. Think of ma

as repeated addition, not multiplication. The order of a is the smallest positive
integer m such that ma = 0. One can check that ma + na = (m + n)a and
(mn)a = m(na). If B is a subgroup of A (it is normal since A is abelian) we write
a coset as a+B and the identity element of A/B is 0 +B.

A key tool in this chapter is Corollary 2.4.29, which says that for coprime
integers m and n the group Zmn is isomorphic to Zm ⇥ Zn. The corollary says
more, that there is a unique isomorphism that takes [1]mn to

�
[1]m, [1]n

�
, but we

only need the existence of the isomorphism in this section. An easy induction
argument establishes the following result

Proposition 3.2.1. Let m1,m2, . . . ,mt be pairwise coprime positive integers and

let m =
Q

t

i=1mi, then

Zm
⇠= Zm1 ⇥ Zm2 ⇥ · · ·⇥ Zmt

Products of Cyclic Groups

Let’s start with abelian groups that we understand well, cyclic groups, and direct
products of cyclic groups. The notation in the theorems below is a bit heavy, so
we start with an example.
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Example 3.2.2. Consider the group Z60⇥Z12⇥Z8⇥Z25. Using Proposition 3.2.1,

Z60
⇠= Z4 ⇥ Z3 ⇥ Z5

Z12
⇠= Z4 ⇥ Z3

Z8
⇠= Z8

Z75
⇠= Z3 ⇥ Z25

Let’s take the direct product of all these factors ordering them by the prime in-
volved (2, 3,or 5) and for each prime, the highest power of that prime first.

Z60 ⇥ Z12 ⇥ Z8 ⇥ Z25
⇠= Z8 ⇥ Z4 ⇥ Z4 (3.1)

⇥ Z3 ⇥ Z3 ⇥ Z3

⇥ Z25 ⇥ Z5

Now, we regroup by combining the highest powers of each prime.

⇠= Z8 ⇥ Z3 ⇥ Z25

⇥ Z4 ⇥ Z3 ⇥ Z5

⇥ Z4 ⇥ Z3

Finally, we have

Z60 ⇥ Z12 ⇥ Z8 ⇥ Z25
⇠= Z600 ⇥ Z60 ⇥ Z12 (3.2)

Both factorizations are of interest: one (3.1) into cyclic groups of prime power
order, the other (3.2) combining the factors prime power factors in a greedy fashion.

The following proofs are just adaptations of the computations in the example
to deal with the general context.

Theorem 3.2.3. Let m1, . . . ,mt be positive integers and A = Z/m1⇥ · · ·⇥Z/mt.

Let P = {p1, . . . , ps} be the set of all primes dividing m1m2 · · ·mt and let the mj

have factorizations mj =
Q

s

i=1 p
eij

i
(allowing some eij = 0). Then

A ⇠= A1 ⇥ · · ·⇥As

where Ai = Z/pei1
i
⇥ Z/pei2

i
⇥ · · ·Z/peit

i
.

Furthermore |Ai| = p
ei where ei =

P
t

j=1 eij.
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Proof. By Proposition 3.2.1, Z/mj
⇠= Z/pe1j1 ⇥ · · ·⇥ Z/pesjs . Thus

A = Z/m1 ⇥ · · ·⇥ Z/mt

⇠= Z/pe111 ⇥ · · ·⇥ Z/pes1s

⇥ Z/pe121 ⇥ · · ·⇥ Z/pes2s

. . .

⇥ Z/pe1t1 ⇥ · · ·⇥ Z/pests

Rearranging terms so that the jth column of factors becomes the jth row, and the
ith row becomes the ith column, we have

⇠= Z/pe111 ⇥ · · ·⇥ Z/pe1t1

⇥ Z/pe212 ⇥ · · ·⇥ Z/pe2t2

. . .

⇥ Z/pes1s ⇥ · · ·⇥ Z/pests

⇠= A1 ⇥ · · ·⇥As

The cardinality of Ai is just the product of the cardinalities of its factors. So,
letting ei =

P
t

j=1 eij , we have |Ai| = p
ei .

Definition 3.2.4. The multiset
�
p
eij

i
: i = 1, . . . , s; and j = 1, . . . t

 
is the set of

elementary divisors of A.

Theorem 3.2.5. With the notation of the previous theorem, for each i let fi1 �

fi2 · · · � fit be a permutation of the exponents ei1, . . . eit putting them in decreasing

order. For j = 1, . . . , t, let nj =
Q

s

i=1 p
fij

i
. Then nt | nt�1 | · · · | n1 and A ⇠=

Z/n1 ⇥ · · ·⇥ Z/nt.

Proof. The fact that nj | nj�1 follows from fij  fi,j�1. Revisiting the previous
proof, we enter after the point where we rearranged the factors. In each line we
then permute the eij to have them in decreasing order (fi1, . . . , fit). The final step
is to rearrange again by combining all the largest prime power factors to create
Zn1 and proceeding iteratively with the next largest prime power factors. As with
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the previous theorem this is just an application of Proposition 3.2.1.

A = Z/m1 ⇥ · · ·⇥ Z/mt

⇠= Z/pe111 ⇥ · · ·⇥ Z/pe1t1

⇥ Z/pe212 ⇥ · · ·⇥ Z/pe2t2

. . .

⇥ Z/pes1s ⇥ · · ·⇥ Z/pests

⇠= Z/pf111 ⇥ · · ·⇥ Z/pf1t1

⇥ Z/pf212 ⇥ · · ·⇥ Z/pf2t2

. . .

⇥ Z/pfs1s ⇥ · · ·⇥ Z/pfst1

⇠= Z/pf111 ⇥ · · ·⇥ Z/pfs1s

⇥ Z/pf121 ⇥ · · ·⇥ Z/pfs2s

. . .

⇥ Z/pf1t1 ⇥ · · ·⇥ Z/pfsts

⇠= Z/n1 ⇥ · · ·⇥ Z/nt

Definition 3.2.6. The nj (that are not 1) in the previous theorem are called the
invariant factors of A.

Exercises 3.2.7.

(a) Find the elementary divisors and the invariant factors for Z/50 ⇥ Z/75 ⇥
Z/136⇥ Z/21000.

(b) Let n1, n2, . . . , nr be integers larger than 1. Under what conditions will
Zn1 ⇥ Zn2 ⇥ · · ·⇥ Znr have r invariant factors?

Exercises 3.2.8. There is a well defined homomorphism Z2400 �! Zd that takes
[1]2400 to [1]d for any d that divides 2400. Given several divisors of 2400 we can
use the universal property of a direct product 2.3.6 to get a homomorphism into
the direct product of several such groups, for example

Z2400
'
�! Z40 ⇥ Z30 ⇥ Z16

(a) What is the kernel?
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(b) Find the elementary divisors of (i) Z2400, (ii) Z40 ⇥ Z30 ⇥ Z16, and (iii) the
kernel of the homomorphism '.

(c) Find the invariant factors of (i) Z2400, (ii) Z40⇥Z30⇥Z16, and (iii) the kernel
of the homomorphism '.

Finite Abelian Groups

In the previous section we showed that a product of cyclic groups can be written
in two di↵erent forms that illuminate the structure better. One form uses cyclic
groups of prime power order (and gives the elementary divisors of the group) and
the other uses a format that identifies the largest cyclic component and, after
splitting o↵ that component, the next largest cyclic component, and so forth.
This gives the invariant factors of the group. We now want to show that this
classification applies to any finite abelian group.

The first step is to split a group into pieces that are, in a sense, coprime. We
then apply induction to write the group as a direct product of groups that have
prime power order. The di�cult step is to show that a group of prime power order
is actually a product of cyclic groups (whose orders are a power of the same prime).

Definition 3.2.9. Let A be an abelian group. For m 2 N let

mA = {ma : a 2 A}

A[m] = {a : ma = 0}

For p a prime define the p-torsion subgroup of A to be

A(p) =
n
a 2 A : ord(a) = p

k for some k

o

An abelian group such that A = A(p) is called a p-group.

Exercises 3.2.10.

(a) Prove that mA, A[n] and A(p) are all subgroups of A.

(b) Prove that A(p) = [1
i=0A[pi], and that, for A finite, A(p) = A[pk] for some

large enough k.

Proposition 3.2.11. Suppose that A is abelian with |A| = mn and m,n coprime.

Then

(1) mA = A[n]

(2) A is the internal direct product of A[m] and A[n]
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Proof. Let u, v 2 Z be such that um + vn = 1. Let a 2 A[n]. Then a = (um +
vn)a = u(ma) + v(na) = m(ua), since we assume na = 0. This shows that
A[n] ✓ mA. On the other hand, an arbitrary element of mA can be written ma

for a 2 A. Since |A| = mn, n(ma) = (nm)a = 0, and this shows mA ✓ A[n] (we
have used Lagrange’s Theorem that the order of a divides the order of the group).

For the second claim of the proposition, we show that A[m] \ A[n] = {0} and
that A[m] +A[n] = A. Then, by Corollary 3.1.6, A ⇠= A[m]⇥A[n].

Let a 2 A. Since a = (mu+ nv)a = m(ua) + n(va) we see that a 2 mA+ nA,
which by the previous paragraph is equal to A[n] +A[m]. Thus A[m] +A[n] = A.
On the other hand, if a 2 A[m]\A[n] then and a = (um+vn)a = u(ma)+v(na) =
0+0. Thus A[m]\A[n] = {0}. We have shown that A is the internal direct product
of A[m] and A[n].

The next proposition shows that our decomposition is uniquely determined.

Proposition 3.2.12. Let A1, A2, B1 and B2 be finite groups. Suppose that A1 ⇥

B1
⇠= A2 ⇥ B2 where everything in Ai has order dividing m and everything in Bi

has order dividing n, with m and n coprime. Then A1
⇠= A2 and B1

⇠= B2.

Proof. Assume A1 ⇥B1
⇠= A2 ⇥B2.

m(Ai ⇥Bi) = mAi ⇥mBi

= {(0,mb) : b 2 Bi}

= {0}⇥Bi

The first step because m(a, b) = (ma,mb) and the last step because multiplication
by m (coprime to n) gives an automorphism of Bi. Since m(A1⇥B1) ⇠= m(A2⇥B2)
we get B1

⇠= B2. Similarly we show A1
⇠= A2.

Corollary 3.2.13. Let |A| = p
e1
1 . . . p

es
s then

A ⇠= A[pe11 ]⇥ · · ·⇥A[pess ] = A(p1)⇥ · · ·⇥A(ps)

This factorization is unique up to reordering.

Proof. Existence of the factorization follows from Proposition 3.2.11 by induction:

A ⇠= A[pe11 ]⇥A[pe22 p
e3
3 · · · p

es
s ]

⇠= A[pe11 ]⇥A[pe22 ]⇥A[pe33 p
e4
4 · · · p

es
s ]

and so forth. There is one subtlety though; we have usedA[pe22 ] =
⇣
A[pe22 p

e3
3 · · · p

es
s ]
⌘
[pe22 ].

This is easily verified. Any nonzero element of A whose order is a power of p2 is
in each of these groups, and nothing else is.
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Uniqueness follows from a similar inductive application of Proposition 3.2.12

The previous corollary is the first step in the classification of finite abelian
groups. The next step is to classify groups satisfying the following definition.

Definition 3.2.14. Let p be a prime number. An abelian p-group is an abelian
group A in which every element of A has order that is a power of p.

The key lemma follows. Its proof is quite technical and not very illuminating,
so I sketch the proof in [Hun12][Sec 8.2].

Lemma 3.2.15. Let A be an abelian p-group and let a be an element of maximal

order. Then A = K + hai and K \ hai = {0} for some subgroup K of A. Thus A

is isomorphic to the direct product of K and hai.

Proof. Let a be an element of maximal order in the abelian p-group A; this order
is a power of p. Let K be as large as possible such that K \ hai = {0}. We want
to show that K + hai = A. Then Corollary 3.1.6 says that A ⇠= K ⇥ hai.

Suppose b 2 A \ (K + hai). Do some tricks to show:

(1) There is a c 2 A \ (K + hai) such that pc 2 K + hai. [ Take the minimal r
such that prb 2 K + hai, then let c = p

r�1
b.]

(2) There is a d 2 A \ (K + hai) such that pd 2 K. [ Let pc = k + ma, argue
that m = pm

0, for some integer m
0 using that a has maximal degree in A

and K \ hai = {0}. Then set d = c�m
0
a.]

By assumption on K, (K + hdi) \ hai 6= {0}, so there is some k 2 K, and nonzero
r, s 2 Z such that k + rd = sa.

Now we consider two cases: If p | r then rd 2 K and consequently sa 2 K.
This contradicts K \ hai = {0}. If p - r then there are u, v such that up+ vr = 1.
Then d = u(pd) + v(rd). The first term is in K and the second in K + hai, so
d 2 K + hai, which is a contradiction.

Summarizing, we assumed K maximal such that K\hai = {0}. Supposing the
existence of some b 2 A \ (K + hai), we showed there was some d 2 A \ (K + hai)
such that pd 2 K. From the maximality assumption on K, there is some element
of (K + hdi) \ hai, which we can write as k + rd = sa for k 2 K and r, s 2 Z.
There are two possibilities, p divides r or not. Both lead to a contradiction. Thus
A must be equal to K + hai.

Theorem 3.2.16. Let A = A(p) be an abelian p-group. Then A is the direct

product of cyclic groups each of which has order a power of p. Consequently, the

order of A is also a power of p.
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The decomposition is unique (up to reordering). Put another way, two abelian

p-groups are isomorphic if and only if their decompositions have the same number

of factors for each power of p.

Proof. Note first that a non-trivial abelian p-group must have order divisible by
p since Lagrange’s Theorem ?? says that the order of an element of the group
(which, by assumption, is a power of p) must divide the order of the group. We
will show that the order of an abelian p-group must actually be equal to a power
of p.

We proceed by induction on the largest power of p that divides the cardinality
of the abelian group. Our induction hypothesis for t � 0 is that any abelian p-
group with order that is divisible by p

t but not by p
t+1 is isomorphic to the direct

product of cyclic groups whose orders are a power of p. An immediate consequence
is that the order of such a group is a power of p, so the order is exactly p

t. We
noted above that the induction hypothesis is true for t = 0, in which case the
abelian p-group is trivial.

Let t � 1. Let A be an abelian p-group of cardinality p
t
m with m not divisible

by p. Using the lemma we can write A as a direct sum A = K + hai with K \

hai = {0}. The subgroup hai is cyclic of order p
s for some s > 0 and therefore

|K|  p
t�s

m. Applying the induction hypothesis to K, shows that m = 1 and K

is isomorphic to the direct product of cyclic groups whose order is a power of p.
Since hai is also cyclic of order p

s, we have that A is the direct product of cyclic
groups of order a power of p.

To prove uniqueness (up to reordering) we note first that if two groups have
the same number of factors for each power of p they are isomorphic. We will write
factorizations by writing the factors in increasing powers of p as follows

A ⇠= (Z/p)k1 ⇥ (Z/p2)k2 ⇥ · · ·⇥ (Z/pr)kr

We now show that we can recover the ki by operating on A. In other words,
two factorizations, one with k1, k2 . . . and one with m� 1,m2, . . . are isomorphic
if and only if ki = mi.

We can recover the ki iteratively. Since logp(|Z/pn|) = n, we have logp(|A|) =P
r

i=1 iki. Notice that pn�1Z/pn ⇠= Z/p and p
kZ/pn is trivial for k � n. Thus the

subgroup p
r�1

A is isomorphic to

p
r�1

A ⇠= (Z/p)kr

Thus we have logp(|p
r�1

A|) = kr. Similar computations for piA with i = r�2, r�
3, . . . , 1 allows one to recover the other ki. (Try it as an exercise!)

96



From Corollary 3.2.13 and the previous theorem we obtain the fundamental
theorem for finite abelian groups..

Theorem 3.2.17 (Fundamental Theorem of Finite Abelian Groups). Let A be an

abelian group of order p
e1
1 . . . p

er
r . Then A is a direct product of cyclic groups, each

having order a power of one of the pi. If we write

A(pi) ⇠= Z/pei,1
i
⇥ Z/pei,2

i
⇥ . . .Z/pei,si

i

then for each i,
P

si
`=1 ei,` = ei. The decomposition is unique, up to reordering.

Exercises 3.2.18. Consider the following problems for n = 72000 and n = 84000.

(a) Classify all abelian groups of order 84,000.

(b) Let n = 72, 000. How many abelian groups are there of order n?

(c) How many of these abelian groups have 2 invariant factors?

(d) How many abelian groups are there of order p6q5r4 where p, q, r are distinct
primes?

(e) How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check your answer
against the response to the previous question.

Exercises 3.2.19. Let p, q and r be prime and let n = p
6
q
2
r
3.

(a) How many abelian groups are there of order n?

(b) How many of these groups have exactly two invariant factors?

Exercises 3.2.20. Here is another approach to proving uniqueness in the classifica-
tion of finite abelian groups.

(a) Show that p
kZpn

⇠= Zpn�k for k  n. Seen another way, there is an exact
sequence

0 �! Zpm
·p

k

�! Zpk+m �! Zpk �! 0

(b) Show that pk�1Zpn

.
p
kZpn

⇠= Zp for k  n.

(c) Suppose that A ⇠= (Zp)k1 ⇥ (Zp2)
k2 ⇥ · ⇥ (Zpn)kn . Show that p

t�1
A/p

t
A ⇠=

(Zp)kt+···+kn .

(d) Conclude the uniqueness part of the classification of finite abelian groups: If

(Zp)
k1 ⇥ (Zp2)

k2 ⇥ ·⇥ (Zpn)
kn ⇠= (Zp)

m1 ⇥ (Zp2)
m2 ⇥ ·⇥ (Zpn)

mn

then ki = mi.
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Finitely Generated Abelian Groups

Our final step is to generalize the results on classification to finitely generated
abelian groups. The strategy is simple. Let A be a finitely generated group. The
torsion subgroup of A is the set of elements of finite order. The first proposition
below shows that it is indeed a subgroup of A. The torsion subgroup has to be a
finite group, since it is finitely generated, so it is classified by the results above.
The next big step is to show that A has a subgroup that is isomorphic to Zr

such that A is the direct product of that subgroup and Tor(A). Thus, a finitely
generated abelian group is isomorphic to a finite direct product of cyclic groups
that are either infinite of prime power order.

Proposition 3.2.21. Let A be an abelian group. Let

Tor(A) = {a 2 A : a has finite order}

(1) Tor(A) is a normal subgroup of A.

(2) All elements of A/Tor(A) (except the identity) have infinite order.

Proof. This was Exercise 2.10.4. Let T = Tor(A). Clearly 0 2 T , so T is nonempty.
If a 2 T has order m then so does �a = (m � 1)a. If b is another element in T

and it has order n, then a+ b has order at most mn since

mn(a+ b) = (mn)a+ (mn)b = n(ma) + n(mb) = 0

Thus T is closed under inversion and multiplication, so it is a subgroup of A.
Normality is immediate since A is abelian.

If b+ T has finite order m in A/T then

mb+ T = m(b+ T ) = 0 + T

This shows that mb 2 T , so mb has some finite order n in A. Then (nm)b =
n(mb) = 0, so b itself has finite order. Thus b 2 T and b+ T = 0+ T . So the only
element of finite order in A/Tor(A) is the identity element.

Definition 3.2.22. A group that has no elements of finite order, other than the
identity, is said to be torsion free.

Let A be an abelian group and let S = {a1, a2, . . . , ar} be a set of elements
in A. We say that the elements of S are independent when for any integers
m1, . . .mr that are not all zero, m1a1 +m2a2 + · · ·+mrar 6= 0.

A free abelian group of rank r is a group that is isomorphic to Zr. It will
have r elements that are independent and also generate A. We will generally use
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ei for the element of Zr that is 1 in the ith component and 0 elsewhere. Borrowing
from the language of vector spaces, we say that the ei are the standard basis for
Zr.

Proposition 3.2.23. The rank of a finitely generated free abelian group is unique.

Proof. Let A ⇠= Zr. Then A/2A ⇠= Zr
/(2Zr) ⇠= (Z/2Z)r. The final isomorphism

comes from Theorem 2.7.10 and the observation that 2Zr = 2Z ⇥ 2Z ⇥ · · · ⇥ 2Z
(both containments are easy to show). Since (Z/2Z)r has 2r elements, we may
recover the rank by computing log2(|A/2A|).

Exercises 3.2.24.

(a) Let A be an abelian group. Suppose f : A! Z is a surjective homomorphism
with kernel K. Show that A has an element a such that A is the internal
direct product K ⇥ hai.

(b) In the previous problem, suppose f is not surjective but f(A) = nZ for some
n 2 N. Show that it still holds that there is an element a 2 A such that A
is the internal direct product K ⇥ hai.

(c) Suppose that A is torsion free and mA ⇠= Zr. Show that A ⇠= Zr.

We need two results before proving that a finitely generated torsion free abelian
group is actually isomorphic to Zr for some r.

Proposition 3.2.25. Let A  Zr
. Then A is isomorphic to Zs

for some integer

s  r.

Proof. We proceed by induction on r. For r = 1 we already know the subgroups
of Z. They are the trivial group (rank 0) and nZ, which is isomorphic to Z.

Assume the statement of the theorem is true for integers less than r. Let
A  Zr and let ei be the element of Zr that is 1 in the ith component and 0
elsewhere. Consider projection onto the rth component Zr ⇡

�! Z. The kernel of
this map is Zr�1 with generators {e1, . . . , er�1}. Let A

◆
�! Zr be the embedding of

A in Zr and consider the composite ⇡ � ◆. The kernel of this map is B = A\Zr�1.
By the induction hypothesis, B is isomorphic to Zs for some integer s  r � 1.

If B = A we are done. Otherwise, ⇡ � ◆ has image nZ for some n > 0. Let
a 2 A be a preimage of n. By Exercise 3.2.24(b) we have A ⇠= B⇥ hai ⇠= Zs

⇥Z =
Zs+1.

Proposition 3.2.26. Let A be a finitely generated, torsion-free abelian group.

Then A is a free abelian group of finite rank.

Proof. Let b1, . . . , br be a maximal independent set in A. These elements are
independent and there is no set of r + 1 elements in A that is independent.
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LetB be the subgroup ofA generated by b1, . . . , br, that isB = {
P

r

i=1mibi : mi 2 Z}.
Consider A/B. I claim that it is a torsion group; every element has finite order.

For any a 2 A, there are integers m0, . . . ,mr such that m0a+m1b1 +m2b2 +
· · · + mrbr = 0, for otherwise {a, b1, . . . br} would be an independent set, contra-
dicting maximality of {b1, . . . br}. Furthermore m0 is not zero, since {b1, . . . br} is
independent, so m0a is a nonzero element of B. Thus for any a 2 A there is an
m0 such that m0(a+B) = m0a+B = 0 +B.

We have shown every element of A/B has finite order. Since it is also finitely
generated it is a finite group. Thus the exponent of A/B (the lcm of the orders
of elements of A/B) is some finite m 2 N. Then, m(A/B) is the trivial subgroup
{0 +B} inside A/B. This shows mA is a subgroup of the free abelian group B.
Thus by Proposition 3.2.25 mA is free abelian of rank s  r, where r is the rank
of B. Applying Exercise 3.2.24(c) we have that A itself is free of rank s. This
concludes the proof.

It is worth noting that, since B  A, Proposition 3.2.25 says that the rank of
B is at most the rank of A, so r  s. We already showed s  r, so A and B have
the same rank.

The proof of the following theorem is similar to Proposition 3.1.13. Exer-
cise 3.2.24(a) was a special case (with r = 1).

Proposition 3.2.27. Let A be a finitely generated abelian group. and let ' : A �!
Zr

be a surjective homomorphism with kernel K. There exists a subgroup B  A

such that ' restricted to B is an isomorphism. Furthermore A = K ⇥B (We use

= rather than ⇠= because A is the internal direct product of the two subgroups).

Proof. Let b1, . . . , br 2 A map to the elements ei of Zr. Let B = hb1, . . . , bri =
{m1b1 + · · ·+mrbr : mi 2 Z}. We know that the bi are independent, because
their images in Zr are independent. In other words, since ' is a homomorphism,P

r

i=1mibi = 0 would imply that
P

r

i=1miei = 0. The latter is only true if all mi

are zero. Thus '|B is injective. Furthermore ' : B �! Zr is surjective since the
ei are in the image and they generate Zr. Thus '|B is an isomorphism.

The conclusion that now follows from Proposition 3.1.13, but we will prove it
directly by using Corollary 3.1.6. The argument above shows that K \ B = {0}.
We will show K +B = A, which gives A ⇠= K ⇥B.

Let a 2 A and let '(a) =
P

r

i=1miei. Let b =
P

r

i=1mibi and consider a� b. It
is easy to see that '(a � b) = 0 so a � b = k for some k 2 K. Thus a 2 K + B.
Since a was arbitrary A = K +B.
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Theorem 3.2.28. Let A be a finitely generated abelian group. There is a unique

integer r � 0 such that A has a subgroup B that is a free abelian group of rank r.

For any such B, A is the internal direct product of Tor(A) and B. Furthermore

Tor(A) is a finite abelian group, so it is the direct product of cyclic groups of prime

power order.

Proof. Proposition 3.2.21 shows that A/Tor(A) is torsion free. Proposition 3.2.26
shows that A/Tor(A) must then be free of some uniquely defined rank r. Proposi-
tion 3.2.27 shows that A has a subgroup B that maps isomorphically to A/Tor(A)
and that A = Tor(A)⇥B.

Finally, we note that A is finitely generated and the quotient group A/B is
isomorphic to Tor(A). Thus Tor(A) is finitely generated and a torsion group.
Therefore it is finite and is classified by Theorem 3.2.17, Tor(A) is also finitely
generated.

Exercises 3.2.29. Infinitely generated abelian groups can be more complicated than
finite ones. Consider the group Q/Z.
(a) On a number line, sketch a region that contains exactly one element for each

equivalence class of Q/Z.
(b) Show that for any integer n there is an element of order n in Q/Z.
(c) How many elements of order n are there in Q/Z?
(d) Show that every element has finite order.

(e) Show that every nontrivial cyclic subgroup is generated by 1
n
for some integer

n > 1.

(f) Show that Q/Z is not finitely generated as an abelian group.

(g) Show that Q/Z cannot be written as a direct product of hai and another
group H for any nonzero a 2 Q/Z.

3.3 Simple Groups and the Classification of Finite Groups

In the previous section we saw that finite abelian groups have a very simple struc-
ture; they are direct products of cyclic groups, each having order a power of a
prime. In this section we take steps to understand the the classification of arbi-
trary finite groups.

The model for classification is unique factorization of integers: Every positive
integer is the product of prime numbers in a unique way. Finite abelian groups
have a somewhat more complicated factorization because the constituents of the
unique factorization may involve Zpr for arbitrary r. So, Zp ⇥ Zp and Zp2 are
distinct even though they have the same number of elements.
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The classification of finite groups is vastly more complicated than the classi-
fication of finite abelian groups. We would like to say that every finite group is
“built” from a set of groups that are analogous to the prime numbers, indivisible
themselves. The “building” process is much more complicated then simply form-
ing a direct product. As we have seen, for example, S3 is the semi-direct product
Z3oZ2 (with the action of Z2 on Z3 being a 7! �a), while Z6 is the direct product
Z3⇥Z2. We will consider S3 as built from the groups Z2 and Z3, just in a di↵erent
way than Z6 is built, so S3 and Z6 have the same constituent parts, but a di↵erent
pasting together of the parts.

As another example consider the quaternion group Q, which is not even a
semi-direct product. We will say that it is built from 3 copies of Z2 (as are all
groups of order 8). The reasoning is this: Q = {±1,±i,±j,±k} has a normal
subgroup generated by i with 4 elements. The quotient Q/hii is isomorphic to
Z2. That normal subgroup generated by i is isomorphic to Z4, and has a proper
normal subgroup generated by i

2 that is isomorphic to Z2. The quotient hii/hi2i
is isomorphic to Z2. We have what is called a composition series

h1iE hi2iE hiiEQ

Each subgroup is normal in the next in the sequence. Furthermore, the quotients
in this case are Z2 at each step, and Z2 is a group that has no normal subgroup
except for the group itself and the trivial group.

Definition 3.3.1. A group G is simple when the only normal subgroups of G
are heGi and G.

A composition series for a group G is a sequence of subgroups
G0 = heGi, G1, G2, . . . , Gn = G such that Gi is a normal subgroup of Gi+1 and
Gi+1/Gi is simple. The simple quotients are called composition factors of G.
We will write

G = G0 EG1 EG2 E . . . Gn�1 EGn = G

The length of the composition series is n.

Proposition 3.3.2. The only simple finite abelian groups are Zp for p prime.

Proof. We have already shown that every finite abelian group is isomorphic to the
direct product of cyclic groups of prime power order. But Zpr is not simple. It is
contructed from r copies of Zp. There is in fact a unique composition series

h0iE hpr�1
iE hpr�2

iE . . . hp
2
iE hpiE h1i = Zpr
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Here are the two big theorems on classifying finite groups. The first is essen-
tially a uniqueness theorem about the composition factors of a group.

Theorem 3.3.3 (Jordan Holder). Suppose G has two composition series

heGi = G0 EG1 EG2 EG3 . . . Gn�1 EGn = G

heGi = G
0

0 EG
0

1 EG
0

2 EG
0

3 . . . G
0

m�1 EG
0

m = G

Then m = n and the lists of simple groups from the two series, G1/G0, . . . , Gn/Gn�1

and G
0

1/G
0

0, . . . , G
0
m/G

0

m�1 are the same up to reordering.

The proof takes several steps and is a bit technical, so we refer to skip it here.
The second big theorem identifies all the simple groups. It was a massive

project in the late 20th century. See the Wikipedia article.

Theorem 3.3.4 (Finite Simple Groups). Every finite simple group is isomorphic

to one of the following:

(1) a cyclic group of prime order, Zp,

(2) an alternating group An, for n � 5,

(3) a group of Lie type,

(4) one of 27 “sporadic groups” (including the Tits group).

We have already shown that Zp is simple. In the rest of this section we get
halfway through the identification of simple groups ;-) by proving that An is simple
for n � 5. We start with two simple lemmas, then prove A5 is simple, then extend
by induction to An for n > 5.

Lemma 3.3.5. Let n � 4. If N EAn and N contains a 3-cycle then N = An.

Proof. Suppose for simplicity (1, 2, 3) 2 N . Let a 2 {4, . . . , n}. Conjugate with
(1, 2)(3, a) to get another element of N .

(1, 2)(3, a)(1, 2, 3)(1, 2)(3, a) = (2, 1, a) 2 N

Now for b 6= 1, 2, a conjugate with (1, a)(2, b)

(1, a)(2, b)(1, a, 2)(1, a)(2, b) = (a, 1, b) 2 N

Finally, the same trick can be used to give an arbitrary (a, b, c) 2 N . We know
from Exercise 2.4.17 that the 3-cycles generate An, so N = An.
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Lemma 3.3.6. Let N E An with n � 5. If N contains a product of two distinct

transpositions then N = An.

Proof. Let � = ⌧1⌧2 2 N . If ⌧1 and ⌧2 do not have disjoint support then their
product is a 3-cycle, and we can apply the last lemma. Suppose they have disjoint
support, � = (a, b)(c, d). Since n � 5 there is another element in {1, . . . , n}, call it
x. Since N is normal, conjugating gives another element of N ,

(a, b, x)
�
(a, b)(c, d)

�
(a, x, b) = (x, a)(c, d) 2 N.

Now take the product of the two elements of N that we have identified,

⇣
(a, b)(c, d)

⌘⇣
x, a)(c, d)

⌘
= (a, x, b) 2 N

Since N has a 3-cycle, N = An by the previous lemma.

Proposition 3.3.7. A5 is simple.

Proof. Let N be a non-trivial normal subgroup in A5. Let � be an element of
N that is not the identity and consider its signature. The possibilities are 2, 2, 1
or 3, 1, 1 or 5. In the lemmas above, we have shown that if � is a product of
disjoint transpositions, or if it is a 3-cycle, then N = An. Suppose the 5-cycle
� = (a, b, c, d, f) is in N and let � = (a, b, c). Note that ��1(����1) 2 N because
the conjugation of � by an element of An lands in N , and N is closed under
multiplication. On the other hand,

(��1
��)��1 = (b, c, d)(c, b, a)

= (a, d, b)

This shows N contains a 3-cycle, so N = An.

Theorem 3.3.8. An is simple for n � 5.

Proof. We proceed by induction, the case n = 5 has been established. Assume that
Ai is simple for i < n; we’ll prove that An is simple. We start with several obser-
vations about Gi = {� 2 An : �(i) = i}. First, Gi is a subgroup and Gi

⇠= An�1.
Second, the Gi are all conjugate subgroups in An since Gi = (1, i, 2)G1(1, 2, i)
(check!). Finally, we show in the next paragraph that An = hG1, . . . , Gni.

Any � 2 An can be written as a product of an even number of transpositions.
Since n � 5, the product of a pair of transpositions must fix some i, and is
therefore in Gi. For example (1, 2)(3, 4) 2 G5. Pairing o↵ consecutive terms in
the factorization of � we see that � can be written as a product of elements in the
groups Gi. Thus An = hG1, . . . , Gni.
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The strategy now is to show that if N is normal in An with N 6= {id} then
N \ Gi 6= {id} for some i. This in turn, by the following argument, implies that
N = An. By the induction hypothesis, each Gi is simple. Since N \ Gi is a
nontrivial normal subgroup of Gi, we have N \Gi = Gi. We noted above that the
Gi are conjugate, so for any j there is some ⇡ 2 An such that Gj = ⇡Gi⇡

�1. But
then

Gj = ⇡Gi⇡
�1

= ⇡(N \Gi)⇡
�1

= (⇡N⇡
�1) \ (⇡Gi⇡

�1)

= N \Gj

Since N \Gj = Gj for all j and the Gj generate An we have N = An.
Finally, to complete the proof, we will show that for a nontrivial N E An we

must have N \ Gi 6= {id} for some i. Suppose that N contains an element �

whose cycle decomposition has a cycle of length at least 3; say �(a) = b, �(b) = c

with a, b, c distinct. Let d, f be di↵erent from a, b, c (we are using n � 5) and
let ⌧ = (a, d, f). Then (⌧�⌧�1)��1

2 N and straightforward computation shows
⌧�⌧

�1
�
�1(c) = c. This shows that N \Gc 6= {id} and therefore, by the previous

paragraph, that N = An.
If N contains no element whose cycle decomposition has a cycle of length at

least 3, then all elements of N are products of disjoint transpositions. Suppose �

is such a nontrivial element of N . We may assume that � doesn’t fix anything, for
we have already shown this would imply An = G. We are assuming n � 6, so �

has at least 3 transpositions � = (a, b)(c, d)(f, g) · · · . Conjugate by ⌧ = (a, b)(c, f)
and multiply by �

�1 and we have (⌧�⌧�1)��1
2 N and ⌧�⌧

�1
�
�1(b) = b. As

above this implies that N = An.
Thus for n � 5, any normal subgroup of An is either trivial or An itself.

Exercises 3.3.9. This problem fleshes out some details in the proof of Theorem
3.3.8: An is simple for n > 5.

(a) Within the alternating groupAn for each i = 1, . . . , n, letGi = {� 2 An : �(i) = i}.
Show that Gi is a subgroup of An.

(b) Find a ⇡ 2 An such that each Gi = ⇡Gj⇡
�1.

(c) Justify the statement in the fourth paragraph of the proof of 3.3.8 “Then
(⌧�⌧�1)��1

2 N and straightforward computation shows ⌧�⌧�1
�
�1(c) = c.”

(d) Justify the statement in the fifth paragraph of the proof of 3.3.8 “(⌧�⌧�1)��1
2

N and ⌧�⌧
�1

�
�1(b) = b.”

105


