
Chapter 5

Fields

5.1 First Fields and Automorphisms

Definition 5.1.1. A field is a set F with two binary operations, + and ⇤, called
addition and multiplication, two special elements 0 and 1, and two unary opera-
tions, a 7�! �a, and, for all but the 0 element, a 7�! a

�1 such that

• F is an abelian group under + with identity element 0 and additive inverse
a 7�! �a.

• F
⇤ = F \ 0 is an abelian group under ⇤ with identity element 1 and multi-

plicative inverse a 7�! a
�1.

• Multiplication distributes over addition: a ⇤ (b+ c) = a ⇤ b+ a ⇤ c.

There are a few fields that should be familiar to you; the following were dis-
cussed in the first chapter.

• The rational numbers Q. This is the smallest field that contains the integers.

• The prime fields, Fp for each prime number p. A fundamental result from
modular arithmetic is that each nonzero element in Z/p, the ring of integers
modulo p, is invertible. One can compute the inverse of a nonzero element
by using the extended Euclidean algorithm. This shows that Z/p is a field.
When studying fields we will write Fp instead of Z/p.

• The real field, R.

• The field of complex numbers C. The complex numbers also form a vector
space of dimension 2 over R with basis {1, i} where i =

p
�1. That is,
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every element can be written in a unique way as a+ bi for a, b 2 R and the
properties of a vector space hold for scalar multiplication by a real number.

• Inside the field of complex numbers is the Gaussian rationals (see 1.2)

Q(i) = {a+ bi : a, b 2 Q}

This is a field, and also a two-dimensional vector space over Q.

Definition 5.1.2. Let K be a field and let F be a subset of K such that F is a
field using the operations ⇤K and +K . We say F is a subfield of K and K is an
extension field of F . We will write F  K and also K/F depending on whether
the emphasis is on F being a subfield of K or K and extension of F .

Exercises 5.1.3.

(a) Let F and E be subfields of K. Show that F \ E is a subfield of K.

(b) Let F be a set of subfields of K, then
\

F2F

F

is a subfield of K.

(c) Let R be a set of subrings of a ring S, then
\

R2R

R

is a subring of S.

If F  K then K is a vector space over F . We write [K : F ] for the dimension.
It is also called the degree of the extension.

For any field F , there is a ring homomorphism Z �! F taking 1 to 1F by
Theorem 4.2.11. If the kernel is trivial then F contains a subring isomorphic to
the integers, and since F is a field it must contain a subfield isomorphic to the
rationals, Q. If the kernel is not trivial, then F contains a subring isomorphic to
Z/m for some integer m. Since F is a field, Z/m cannot have zero-divisors, so m

must be prime. Thus we have two cases, a field F either contains a copy of Fp

or Q. This smallest field contained in F is called its prime field. We say F has
characteristic p, when Fp  F or characteristic 0 in the case Q  F .

As with groups and with rings, a natural topic to investigate is the functions
that respect the structure of fields.

Definition 5.1.4. For fields F and K, a function ' : F �! K is a homomorphism
when
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(1) ' is a homomorphim from the group F,+F to K,+K , and

(2) ' is a homomorphism from the group F
⇤
, ⇤F to K

⇤
, ⇤K .

Applying Proposition 2.2.2, ' : F �! K is a homomorphism of fields if it
respects addition and multiplication:

'(a1 +F a2) = '(a1) +K '(a2), and

'(a1 ⇤F a2) = '(a1) ⇤K '(a2)

In these two equations I have emphasized that the addition and multiplication
on the left is done in F and the addition and multiplication on the right is in
K. Generally, we follow standard practice and do not write the subscripts on
the operation signs to make the equations more legible. But, don’t forget the
distinction! We will also usually not write the multiplication sign, unless there is
some important reason to use it.

It turns out that a homomorphisms of fields is always injective!

Proposition 5.1.5. Let ' : F �! K be a homomorphism of fields. Then '(a) =
'(b) implies a = b, so ' is injective.

Proof. Let ' : F �! K be a homomorphism. Let a be a nonzero element of F .
Since aa

�1 = 1F , applying ' we get '(a)'(a�1) = 1K . Since 0K does not have a
multiplicative inverse, '(a) cannot be 0K . Thus a 6= 0F implies '(a) 6= 0K .

Now suppose '(a) = '(b). Then '(a�b) = 0K , and the contrapositive of what
we showed in the previous paragraph gives a� b = 0, so a = b.

A homomorphism of fields ' : F �! K is often called an embedding of F in
K since it places an isomorphic copy of F , namely '(F ) inside of K.

The next proposition is completely analogous to results about the composition
of homomorphisms of groups, Proposition 2.2.2, and properties of isomorphisms,
Proposition 2.2.9.

Proposition 5.1.6.

(1) The composition of two field homomorphisms is a field homomorphism.

(2) The composition of two isomorphisms of fields is an isomorphism of fields.

(3) Let ' : F �! K be an isomorphism of fields. The inverse function '
�1 :

K �! F is also an isomorphism of fields.
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Proof. (1) We have already shown that the composition of group homomor-
phisms is a group homomorphism. Thus the composition of two field ho-
momorphisms ↵ : F �! H and � : H �! K is is both a homomorphism of
the additive group F,+F to K,+K and a homomorphism of the multiplicate
group F, ⇤F to K, ⇤K . Therefore � � ↵ is a field homomorphim.

(2) The composition of two bijections is a bijection and the composition of two
isomorphisms is an isomorphism.

(3) We can apply the fact that the inverse of an isomorphism of groups is also
an isomorphism of groups to prove the result in a similar fashion to the first
item.

And now the culmination of this section!

Definition 5.1.7. Let K be a field. The automorphism group of K is the set of
all isomorphisms from K to itself, with the operation of composition. It is written
Aut(K). Let F be a subfield of K. An automorphism � such that �(a) = a for
all a 2 F is said to fix F . The set of automorphisms K that fix F is denoted
Aut(K/F ).

The previous proposition shows that the composition of automorphisms is an
automorphism and that every isomorphism has an inverse, so Aut(K) is a group.
It is a simple exercise to show that the composition of two automorphisms that fix
F also fixes F and that the inverse of an automorphism that fixes F also fixes F .

Corollary 5.1.8. For K a field, Aut(K) is a group under composition. If F is a

subfield of K, Aut(K/F ), the automorphisms of K that fix F , form a group under

composition.

What can we say about automorphisms of the fields introduced above? First
note that any automorphism has to take 1 to itself. Consider an automorphism '

of Q. We must have '(1) = 1. Since ' respects addition,

'(1 + · · ·+ 1| {z }
b terms

) = '(1) + · · ·+ '(1)| {z }
b terms

which shows that '(b) = b for each positive integer b. Since ' also respects
additive inverses, '(�b) = �b for positive integers b, so ' is the identity map on
the integers. Since ' respects multiplicative inverses, '(1/b) = 1/'(b) = 1/b for
any integer b, and since ' respects products '(a/b) = '(a)'(1/b) = a/b. Thus
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we have shown that the only automorphism of Q is the identity map. A similar
(shorter argument) shows that the only automorphism of Fp is the identity map.

Notice also that there can be no homomorphism from Q to Fp since any homo-
morphism must be injective. There can’t be a homomorphism from Fp to Q since
we would have to map 1Fp to 1Q, but 1 + · · ·+ 1| {z }

p terms

= 0 in Fp while 1 + · · ·+ 1| {z }
p terms

6= 0

in Q.
The reals are vastly more complicated, so let’s consider automorphims of C that

fix R; so we consider automorphisms ' such that '(r) = r for r 2 R. We know that
i ⇤ i = �1 so '(i) ⇤ '(i) = '(�1) = �1. We know there are only two square roots
of 1 in C, so there are only two possibilities: '(i) is either i itself or �i. In the
first case ' has to be the identity map, '(a+ bi) = '(a) + '(b)'(i) = a+ bi since
' fixes the reals. In the second case ' is the conjugation map: '(a+ bi) = a� bi.
It is clear that the composition of the conjugation map with itself is the identity
map. Thus, Aut

�
C/R

�
⇠= Z2.

A similar argument applies to the field Q(i). The field Q has to be fixed,
and the only non-identity automorphims takes a + bi to a � bi. Thus we have
Aut

�
Q(i)

�
⇠= Z2.

This simple example is the model for much of our work in this chapter. For a
field K containing another field F , we seek to understand the automorphisms of
K that fix F , and to use that knowledge to better understand the field K.

5.2 Constructing Fields

We have three main tools for constructing new fields.

Construction I: In Section 1.1 we showed that the ring of integers modulo a
prime forms a field, which we write Fp. Similarly, in Section 1.3 we showed
that for F a field and m(x) irreducible, F [x]/m(x) is a field (see Theo-
rem 4.1.9). More generally, for any ring R, Theorem 4.6.11 shows that R/I

is a field whenever I is a maximal ideal.

Construction II: The second method is based on the construction of the rational
numbers from the integers. For an integral domain R, let D = R \ {0} and
form the ring of fractions D

�1
R as in Section 4.7. This is a field. For the

integral domain F [x] over a field F , the resulting field is written F (x) =
{a(x)/b(x) : a(x), b(x) 2 F [x] with b(x) 6= 0}.

Construction III: The third method is to take a subfield of a given field. We did
this in Section 1.2 when we introduced the subfield of the complex numbers
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Q(i). Given any field K and a subset S ✓ K we can take the intersection
of all subfields of K containing S. Exercise 5.1.3 show that this is a field
(letting F be the set of all fields containing S). It contains S and it is, by
construction a subfield of every field containing S. Thus it makes sense to
call it the smallest subfield containing S. We often are interested in the
smallest subfield of K containing a specific subfield F and some additional
set of elements S ✓ K \ F . We write this F (S). If no subfield is specificied,
we know that this field must contain one of the prime fields Q, or Fp, so we
may write it Fp(S) or Q(S) as appropriate.

With the notation of Construction III, given a subset S of K we may also take
the intersection of all rings containing S and some subfield F , which we write F [S].

There is a relationship between Construction III and the other constructions,
which we can illustrate with two examples inside the complex field. Before intro-
ducing the two examples recall Theorem 4.3.9, which we adapt here as follows.

Theorem Let F be a subfield of a field K. For any s 2 K there is a unique
homomorphism from F [x] to K that takes x to s, namely

' : F [x] �! K
X

i

aix
i
7�!

X

i

ais
i

Definition 5.2.1. Continuing with the notation as stated above, if the homo-
morphism is injective we say that s is transcendental over F . Otherwise s is
algebraic over F . The monic generator of the kernel in the theorem is called the
minimal polynomial of s.

Proposition 5.2.2. If s is algebraic over F then the minimal polynomial of s is

an irreducible polynomial. Consequently, the image of ' as defined in the theorem

is a subfield of K. Thus F [s] = F (s). The dimension [F (s) : F ] is equal to the

degree of the minimal polynomial.

Proof. Suppose by way of contradiction, that the monic generator of the kernel is
m(x) and it factors as m(x) = f(x)g(x) 2 F [x]. Then f(s)g(s) = 0 in K. Since
K is a field either f(s) or g(s) is zero. Suppose the former. Then f(x) is in the
kernel, and is therefore a multiple of m(x). Since f(x) is also a factor of m(x) we
must have that g(x) has degree 0, so it is a constant. This shows that m(x) is
irreducible.

Alternatively, we can prove the result by noting that F [x] modulo m(x) is
isomorphic to its image in K, which must be an integral domain. Since a reducible
polynomial yields a quotient ring with zero divisors by Corollary 4.1.10, the kernel
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must be generated by an irreducible polynomial. Moreover, the quotient of F [x]
by an irreducible polynomial is a field, so the image of ' is actually a subfield of
K.

Note that the image of ' consists of polynomials in s. Thus the smallest ring
containing F and s is also the smallest field containing F and s: F [s] = F (s). We

note also that this is
nP

n�1
i=0 ais

i

o
where n = deg(m(x)), since the polynomials

of degree less than n form a system of representatives for F [x]/m(x). Since each
element of F [s] is uniquely expressed as a polynomial in s of degree less than
deg(m(x)), the degree of the extension F (s)/F is equal to deg(m(x)).

Proposition 5.2.3. If K contains some transcendental element over F then [K :
F ] is infinite. Conversely, if K is finite dimensional over F then every element of

K is algebraic over F .

Proof. Suppose that ↵ 2 K is transcendental over F . Then F [↵] is isomorphic
to F [x] since it is the image of the injective homomorphism ' : F [x] �! K that
takes x to ↵ and fixes F . In F [x] the powers of x, xi, are linearly independent,
so F [x] is infinite dimensional over F . Since F [↵] is isomorphic to F [x], it is also
infinite dimensional over F . Since K contains F [↵] it is infinite dimensional over
F .

Example 5.2.4. Consider the homomorphism ' : Q[x] �! C that takes x to i =
p
�1. This is not injective, the kernel is x2 + 1 and the image is Q[i], the ring of

polynomials in i with rational coe�cients. It is isomorphic to Q[x]/(x2 + 1). This
is a field because x

2 + 1 is irreducible. Thus the field Q(i) = Q[i].
Similarly, Q(

p
2) ⇠= Q[x]/(x2 � 2) and Q( 3

p
2) ⇠= Q[x]/(x3 � 2). The latter

example is subtle though. There are three cube roots of 2 in C, the others are
3
p

(2)! and 3
p

(2)!2 where ! = (1 �
p
3i)/2. Define ' : Q[x] �! C by '(x) =

3
p

(2)!. This gives Q( 3
p
2!) ⇠= Q[x]/(x3 � 2). We may do the same for 3

p
2!2, so

there are three embeddings of Q[x]/(x3 � 2) in C.
Example 5.2.5. Consider the homomorphism ' : Q[x] �! C that takes x to e

where e is the Euler number e ⇡ 2.71. It is not obvious, but e is transcendental,
not algebraic []. The homomorphism ' is therefore an isomorphism of Q[x] with
its image Q[e]. The smallest field containing Q[e] is

Q(e) =

⇢
f(e)

g(e)
: f(e), g(e) 2 Q[e] and g(e) 6= 0

�

The stipulation that g(e) 6= 0 is simply requiring that the coe�ecients of g not all
be zero, since no nonzero polynomial in Q[x] evaluates at e to 0.

The number ⇡ ⇡ 3.14 is also transcendental [] so there is an isomorphism
between Q[x] and Q[⇡] and between Q(x) and Q(⇡).
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The set of algebraic numbers (the complex numbers algebraic over Q) is ac-
tually countable, while the complex numbers (and therefore the transcendental
numbers) are uncountable.[]

Our focus henceforth is on Construction I. Let m(x) be a monic irreducible
polynomial of degree n > 1 over a field F . Let m(x) = x

n + mn�1x
n�1 + · · · +

m1x+m0. In the quotient ring F [x]/m(x) the coset x+ hm(x)i satisfies

(x+ hm(x)i)n +mn�1(x+ hm(x)i)n�1 +mn�2(x+ hm(x)i)n�2 + · · ·

· · ·+m2(x+ hm(x)i)2 +m1(x+ hm(x)i) +m0

= (xn +mn�1x
n�1 +mn�2x

n�2 + · · ·+m2x
2 +m1x+m0) + hm(x)i

= 0 + hm(x)i

In other words, we may think of m(x) as having a root in F [x]/m(x), namely the
coset x+ hm(x)i.

It is common therefore to give this coset a new symbol, let’s call it ↵, and to
speak of the quotient ring as follows: We adjoin a root ↵ of m(x) to obtain the
field F (↵) in which x�↵ is now a factor of m(x). In the polynomial ring F (↵)[x],
we can then factor m(x) by dividing m(x) by x�↵. A natural question is whether
m(x)/(x� ↵) is now irreducible, or does it factor completely (into linear factors),
or something in between?

The upcoming sections explore this question. It is clear though that if deg(m(x)) =
2 then adjoining a root of m(x) will factor m(x) completely, since the quotient
m(x)/(x� ↵) will be another linear factor.

More generally, over Q, every extension by a root of a quadratic is isomorphic
to Q(

p
D) for some square free integer D. The exercise below steps through the

proof.

Exercises 5.2.6. Let m(x) = x
2+ax+b be an irreducible quadratic over Q.

(a) Use the quadratic formula to find two distinct embeddings of Q[x]/m(x) into
C.

(b) Show that these two embeddings have the same image (although the image
of x+ hm(x)i itself is di↵erent in the two cases.

(c) Show that there is some square free integer D such that Q(
p
D) is the same

field as the one determined by Q[x]/m(x).

(d) Conclude that every degree 2 extension of Q is isomorphic to Q(
p
D) for

some square free integer D.

(e) Conclude also that every degree 2 extension of Q has one non-trivial auto-
morphism.

Finally, we have this relationship between an automorphim of a field extension
and the minimal polynomial of an element in the extension.
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Proposition 5.2.7. Let K be an extension of F . Let ↵ 2 K have minimum

polynomial m(x) over F . For any � 2 Aut(F/K), �(↵) is also a root of m(x).

Proof. Let m(x) = x
d +md�1x

d�1 + · · ·+m0 be the mimimum polynomial for ↵
over F . Each mi 2 F so

�

⇣
m(↵)

⌘
= �

 
nX

i=1

mi↵

!

=
nX

i=1

�(mi↵) since � respects sums,

=
nX

i=1

mi�(↵) since � respects products and fixes elements of F

= m (�(↵))

Since m(↵) = 0 we have m(�(↵)) is also 0.

The quadratic formula

There is a relationship between the quadratic formula and field extensions.
Consider a quadratic m(x) = ax

2 + bx + c with a, b, c 2 Q. The roots of this
polynomial are r = �b/2a +

p
b2 � 4ac/2a and r̄ = �b/2a �

p
b2 � 4ac/2a. Let

D = b
2
� 4ac be the discriminant of m(x) and suppose D is not a perfect square

(Then
p
D is irrational).

I claim that Q[r] = {a+ br : a, b 2 Q} and Q[
p
D], are the same (not just

isomorphic, they include the same elements from C). One inclusion is easy, r is
evidently in Q[

p
D] since r is the sum of a rational number, �b/2a, and a rational

multiple of
p
D. Consequently any s+ tr with s, t 2 Q is also in Q[

p
D].

To prove the reverse inclusion, note that b + 2ar =
p
D so

p
D 2 Q[r]. Then

s + t
p
D = s + t(2ar + b) = (s + tb) + (2at)r will also be in Q[r]. Thus the two

fields are equal.
Sincem(x) has no rational roots, it is irreducible. Consider the field Q[x]/m(x).

It is a straightforward calculation to show that it is isomorphic to Q[r]. We now
know that Q[x]/m(x) is isomorphic to Q[r] that Q[r] is equal to Q[

p
D] and by

Proposition ?? Q[
p
D] is equal to Q[

p
a] for some square free integer a. Further-

more, the automorphism group of Q[x]/m(x) has just two elements.
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5.3 Finite Fields

In this section we characterize finite fields by proving the existance and uniqueness
of a field of order pn for any prime p and n 2 N, and by revealing the structure of
these fields and of their automorphism groups.

Theorem 5.3.1. Let K be a field with a finite number of elements.

(1) K has p
n
elements for some prime p and n 2 N.

(2) Each element of K is a root of x
p
n
� x, so x

p
n
� x factors completely, into

distinct linear factors, over K.

(3) There is an element ⌘ 2 K whose powers ⌘
1
, ⌘

2
, . . . , ⌘

p
n
�1 = 1 give all the

nonzero elements of K. Consequently, K
⇤
is cyclic of order p

n
� 1.

(4) K is isomorphic to Fp[x]/m(x) for some irreducible polynomial m(x) of de-

gree n over Fp. Furthermore m(x) is a factor of x
p
n
� x.

For any prime p and any positive integer n:

(4) There exists a field with p
n
elements.

(5) Any two fields with p
n
elements are isomorphic.

We use Fpn to denote the unique field with p
n
elements. The automorphism group

of Fpn satisfies:

(6) Aut(Fpn) is generated by the Frobenius map, '(�) = �
p
for � 2 Fpn.

(7) Aut(Fpn) ⇠= Z/n.

As a first step we prove

Proposition 5.3.2. A finite field is a vector space over Fp for some prime p.

Consequently, the number of elements of K is a power of p.

Proof. Suppose that K is a finite field. The smallest field contained in K, its prime
field, must be Fp for some prime number p.

From the definition of a field we can see that K satisfies the properties for
a vector space over Fp. For example: if a 2 Fp and �, � 2 K then a(� + �) =
a� + a� follows from the distributive law, but may be also considered as the
property concerning scalar multiplication (by ↵) of a sum of vectors, � + �. If the
dimension of K over Fp is n then K has a basis u1, . . . , un and the elements of K
are a1u1 + . . . , anun for ai 2 Fp. Thus K must have p

n elements.
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Suppose that q = p
n is the number of elements in K. By the definition of a

field, the set of nonzero elements of K is a group under multiplication. This group
is denoted K

⇤. Recall that the order of an element ↵ in a group G is the smallest
positive integer r such that ↵r is the identity, or infinity, if no such r exists. The
order of an element divides the order of the group (Lagrange’s theorem).

Proposition 5.3.3. Let K be a field with p
n
elements. The polynomial x

p
n
� x

factors completely, into distinct linear factors, over K.

x
p
n
�1

� 1 =
Y

↵2K⇤

(x� ↵) and,

x
p
n
� x =

Y

↵2K

(x� ↵)

Proof. The multiplicative group K
⇤ has pn � 1 elements, so each element ↵ 2 K

⇤

has order dividing p
n
�1. Thus each ↵ 2 K

⇤ is a root of xp
n
�1

�1 and each ↵ 2 K

is a root of xp
n
� x. Since roots correspond to factors of a polynomial, we have p

n

linear factors of xp
n
� x, one for each element of K. Their product has degree p

n

so must be equal to x
p
n
� x.

Recall the following properties from Theorem 2.1.11 and problems immediately
following it.

Theorem Let ↵ be an element of order r in an group G.

(1) ↵
i = ↵

j i↵ i ⌘ j mod r.

(2) The order of ↵i is r/d where d = gcd(i, r).

(3) Let G be abelian. Let � 2 G have order s, coprime to r = ord(↵). Then
ord(↵�) = rs.

(4) Let G be abelian. If ↵1, . . . ,↵n have orders r1, . . . , rn where the ri are pair-
wise coprime, then ord(

Q
n

i=1 ↵i) =
Q

n

i=1 ri.

Now we can establish item (3) of the Theorem.

Proposition 5.3.4. The multiplicative group of a finite field is cyclic.

Proof. LetK have pn elements and let the prime factorization of pn�1 be
Q

r

i=1 q
bi
i
.

We will show below that for each i = 1 . . . , r there is an element ⌘i 2 K
⇤ of order

q
bi
i
. Let ⌘ =

Q
r

i=1 ⌘i. Since the q
bi
i

are coprime to each other, the theorem above

shows that the order of ⌘ is
Q

r

i=1 q
bi
i
= p

n
�1. Thus ⌘ generates the multiplicative

group of K.
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Now we prove the claim. Suppose that q is prime and q
b appears in the prime

factorization of pn � 1, so q
b divides pn � 1 but qb+1 does not. Let t = (pn � 1)/qb

and consider the set S = {↵
t : ↵ 2 K

⇤
}. For any � 2 S the polynomial xt � �

has at most t roots so there can be at most t elements of K whose tth power is
�. Therefore the cardinality of S is at least (pn � 1)/t = q

b. On the other hand,

everything in S is a root of xq
b
� 1 since

(↵t)q
b
= ↵

p
n
�1 = 1

There can be only q
b roots of xq

b
� 1, so S has at most q

b elements. This shows
|S| = q

b. Similarly, at most qb�1 of the elements in S can be roots of xq
b�1

� 1 so
there must be at least qb � q

b�1 elements of S whose order in K is qb. This shows
what we wanted: there is some element of K of order qb.

Definition 5.3.5. An element of a finite field whose powers generate the nonzero
elements of the field is called primitive.

Proposition 5.3.4 says that every finite field has a primitive element. Further-
more, from the lemma, if ⌘ is primitive in a field of pn elements then ⌘

k is also
primitive whenever k is coprime to p

n
� 1. Thus there are '(pn � 1) primitive

elements, where ' is the Euler totient function ('(n) is the number of positive
integers less than n and coprime to n).

To prove item (4) of the Theorem we need to use the minimal polynomial of a
primitive element.

Proposition 5.3.6. Let K be a finite field of p
n
elements. Let ⌘ be any primitive

element of K, let ' : Fp[x] �! K take x to ⌘ and let m(x) generate the kernel (so

m(x) is the minimal polynomial of ⌘ over Fp). Then K is isomorphic to Fp[x]/m(x)
and degm(x) = n. Furthermore, m(x) divides xp

n
�x and m(x) factors completely

in K.

Proof. From the first isomorphism theorem, ' gives rise to an isomorphism from
Fp[x]/m(x) to its image in K. This image must be a field since m(x) must be
irreducible. But the image of ' contains ⌘ and therefore all of its powers. Thus
the image is all of K and we have K ⇠= Fp[x]/m(x). The dimension of K is n and
the dimension of Fp[x]/m(x) is deg(m(x)) so the degree of m(x) is n.

By Proposition 5.3.3, xp
n
� x factors into linear factors in K and ⌘ is one of

the roots. This implies that xp
n
� x is in the kernel of ', so m(x) divides xp

n
� x.

Since x
p
n
� x factors completely in K so to does m(x).

We can now prove existence and uniqueness for fields of prime power order.
We will need the “Freshman’s dream”:
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Proposition 5.3.7. Let ↵,� be elements of a field of characteristic p. Then

(↵+ �)p = ↵
p + �

p
.

Proof. Expanding (↵+ �)p using the binomial theorem we get terms like

✓
p

k

◆
↵
k
�
p�k

The binomial coe�cient really means 1 added to itself
�
p

k

�
times. Since p divides

the binomial coe�cient when 1 < k < p the coe�cient is 0 unless k = 0 or k = p.
That gives the result.

Proposition 5.3.8. For any prime power there exists a unique field of that order.

Proof. Uniqueness: Let K and K
0 be two fields with p

n elements. Let ⌘ be a
primitive element in K and let m(x) be its minimal polynomial over Fp. The
previous proposition showed that ⌘ is a root of xp

n
� x, and m(x) divides xp

n
� x.

By Proposition 5.3.6, xp
n
� x factors into distinct linear factors in both K and K

0

so there must be a root of m(x) in K
0. Call this root ⌘0. Then the homomorphism

from Fp[x] to K
0 that takes x to ⌘

0 must have image that is a subfield of dimension
n in K

0, and is therefore all of K
0. By Proposition 5.3.6, both K and K

0 are
isomorphic to Fp[x]/m(x) so they are isomorphic to each other.

Existence: By successively factoring x
p
n
�x and adjoining roots of a nonlinear

irreducible factor, we can, after a finite number of steps, arrive at a field in which
x
p
n
� x factors completely. I show below that the roots of xp

n
� x form a field.

Since the derivative of xp
n
� x is �1, xp

n
� x does not have multiple roots, so

by the roots-factors theorem it has exactly p
n roots. Thus we have a field of pn

elements.
To show the roots of xp

n
�x form a field, we need to show that the sum of two

roots is a root, that the additive inverse of a root is a root, that the product of two
roots is a root and that the multiplicative inverse of a root is a root. These are all
trivial except for the case of the sum of two roots, which can be proved using the
“Freshman’s dream.”

Definition 5.3.9. Let K be a finite field and let p(x) be a polynomial over K. If
p(x) is irreducible and the class of x is primitive in K[x]/p(x), then we say p(x) is
a primitive polynomial.

Example 5.3.10. There is a unique irreducible polynomial of degree 2 over F2,
x
2+x+1. Let’s use it to construct the field F4 as F2[x]/(x2+x+1). Let ⌘ be the

congruence class x+ hx
2 + x+ 1i, then ⌘ is a root of x2 + x+ 1. We say that we

have adjoined ⌘ to F2 to create the field F4. The elements of F4 are polynomials in
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⌘ of degree less than 2: F4 = {0, 1, ⌘, ⌘ + 1}. Addition is component-wise (relative
to the basis {1, ⌘}). Multiplication must take account of ⌘2 = ⌘ + 1. Here is a
multiplication table for this field.

⇤ 1 ⌘ ⌘ + 1

1 1 ⌘ ⌘ + 1
⌘ ⌘ ⌘ + 1 1

⌘ + 1 ⌘ + 1 1 ⌘

We can also see that ⌘ is a primitive element. Since F⇤

4 has 3 elements, any
element besides 1 generates F⇤

4. An alternative to compute in this field is by making
a table of powers of ⌘ and the corresponding polynomials in ⌘ as follows.

exponential form polynomial form
1 1
⌘ ⌘

⌘
2

⌘ + 1

The following example shows that there can be many ways to construct a given
field.

Example 5.3.11. Let p = 2. We can construct the field F23 by adjoining to F2 a
root ⌘ of the irreducible polynomial m(x) = x

3 + x+ 1. Since the degree of m(x)
is 3, the elements of the field will be polynomials of degree less than 3 in ⌘.

Here is the “dictionary” between powers of ⌘ and corresponding polynomials
in ⌘. We use ⌘

3 = ⌘ + 1 to compute successive rows in the table.

exponential form polynomial form
1 1
⌘ ⌘

⌘
2

⌘
2

⌘
3

⌘ + 1
⌘
4

⌘
2 + ⌘

⌘
5

⌘
2 + ⌘ + 1

⌘
6

⌘
2 + 1

The next line in the table would be

⌘
7 = ⌘

3 + ⌘ = ⌘ + 1 + ⌘ = 1

This is to be expected, since F⇤

8 is a cyclic group of order 7. Note that every
element of F⇤

8 except 1 is primitive, since 7 is prime.
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We can use this table to verify that ⌘2 is another root of x3 + x+ 1

(⌘2)3 + ⌘
2 + 1 = ⌘

6 + ⌘
2 + 1

= 0

Similarly ⌘
4 is also a root.

(⌘4)3 + ⌘
4 + 1 = ⌘

12 + ⌘
4 + 1

= ⌘
5 + ⌘

4 + 1

= (⌘2 + ⌘ + 1) + (⌘2 + ⌘) + 1

= 0

The Finite Field Theorem says that there is a unique field of order 8 so every
irreducible polynomial of degree 3 over F2 must have roots in the field that we
constructed. There are 2 monic irreducible polynomials of degree 3 over F2: x3 +
x+ 1, which we used to construct this field, and x

3 + x
2 + 1.

Similar computations show that ⌘3, ⌘5 and ⌘
7 are the roots of x3 + x

2 + 1.
Here is a multiplication table (omitting 0) for the representation of F8 using

x
3 + x+ 1.

⇤ 1 ⌘ ⌘ + 1 ⌘
2

⌘
2 + 1 ⌘

2 + ⌘ ⌘
2 + ⌘ + 1

1 1 ⌘ ⌘ + 1 ⌘
2

⌘
2 + 1 ⌘

2 + ⌘ ⌘
2 + ⌘ + 1

⌘ ⌘ ⌘
2

⌘
2 + ⌘ ⌘ + 1 1 ⌘

2 + ⌘ + 1 ⌘
2 + 1

⌘ + 1 ⌘ + 1 ⌘
2 + ⌘ ⌘

2 + 1 ⌘
2 + ⌘ + 1 ⌘

2 1 ⌘

⌘
2

⌘
2

⌘ + 1 ⌘
2 + ⌘ + 1 ⌘

2 + ⌘ ⌘ ⌘
2 + 1 1

⌘
2 + 1 ⌘

2 + 1 1 ⌘
2

⌘ ⌘
2 + ⌘ + 1 ⌘ + 1 ⌘

2 + ⌘

⌘
2 + ⌘ ⌘

2 + ⌘ ⌘
2 + ⌘ + 1 1 ⌘

2 + 1 ⌘ + 1 ⌘ ⌘
2

⌘
2 + ⌘ + 1 ⌘

2 + ⌘ + 1 ⌘
2 + 1 ⌘ 1 ⌘

2 + ⌘ ⌘
2

⌘ + 1

Now we consider the automorphism group of a finite field. Recall that any
automorphism has to take 1 to itself, and must therefore fix the subfield Fp.

Proposition 5.3.12. The automorphism group of Fpn is cyclic of order n, gener-

ated by the Frobenius map ' : ↵ 7�! ↵
p
.

Proof. The Frobenius map respects addition, by the Freshman’s dream, and it
clearly respects multiplication: '(↵�) = (↵�)p = ↵

p
�
p = '(↵)'(�). Thus ' is a

homomorphism of fields. Since a homomorphism of fields must be injective, and
since an injective function on a finite set is also surjective, we conclude that ' is
an automorphism.
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Repeatedly composing the Frobenius with itself gives other automorphims and
one can inductively establish the formula: 't(↵) = ↵

p
t
. Since F⇤

pn has order pn�1

we have for ↵ 6= 0, 'n(↵) = ↵
p
n
= ↵

p
n
�1

⇤ a = 1 ⇤ ↵ = ↵.
Thus 'n is the identity map. I claim no lower power of ' is the identity map.

Suppose that 'r is the identity automorphism and let ⌘ be primitive in Fpn . Then
⌘ = '

r(⌘) = ⌘
p
r
, so ⌘

p
r
�1 = 1. Since ⌘ is primitive it has order pn � 1, so we see

r � n as claimed.
We need to show that there are no other automorphisms of Fpn . Let ⌘ be

primitive, and let m(x) = x
n+mn�1x

n�1+ · · ·+m0 be its mimimum polynomial.
The lemma showed that 'r(⌘) = ⌘

p
r
is another root of m(x). Since ⌘ is primitive,

⌘, . . . , ⌘
p
n�1

are all distinct and thus they form the complete set of roots of m(x).
Let � be an arbitrary automorphim of Fpn . Then � must take ⌘ to one of these

other roots of m(x). The action of � on ⌘ determines � completely, so if �(⌘) = ⌘
p
r

then � = '
r.

In conclusion Aut(Fpn) is cyclic of order n, and is generated by '.

Example 5.3.13. Consider now the degree 3 extension of F3, the field with 27
elements, F27. In this field there is just one subfield F3, so there are 24 elements
that have a minimal polynomial of degree 3. Each of these minimal polynomials
factors completely in F27 by Proposition5.3.6. Thus we have 24/3 = 8 monic
irreducible polynomials of degree 3 over F3.

Another way to count the number of irreducible monic polynomials of degree 3
over F3 is to count the number of monic reducible polynomials and subtract that
from the total number of monic polynomials. There are 27 monic polynomials of
degree 3, since we choose 3 coe�cients from F3. A reducible polynomial is either
the product of 3 linear factors or the product of a linear and a quadratic irreducible.
There are 3 monic linear polynomials, and 3 monic quadratic irreducibles, so 9 pos-
sible products. For a product of linear monic polynomials we choose 3 factors with
replacement from the 3 linear polynomials, so there are

�3+2
3

�
= 10 possibilites.

Thus the number of irreducibles shoule be 27� 9� 10 = 8. That checks with our
computation from the previous paragraph.

The multiplicative group F⇤

27 is cyclic of order 26. In Z/26 the odd numbers,
other than 13, are all generators for the group so there are 12 generators. Conse-
quently in F⇤

27 there are 12 primitive elements. Each is a root of one of the monic
irreducible polynomials of degree 3, so we expect 12/3 = 4 di↵erent primitive
monic polynomials of degree 3.
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Here are the monic irreducibles of degree 3 over F3 that are not primitive

x
3 + 2x2 + 2x+ 2,

x
3 + x

2 + x+ 2

x
3 + 2x+ 2

x
3 + x

2 + 2,

and here are the ones that are primitive.

x
3 + 2x+ 1

x
3 + 2x2 + x+ 1

x
3 + x

2 + 2x+ 1

x
3 + 2x2 + 1

5.4 Problems

Exercises 5.4.1. Irreducible polynomials over F2

(a) (Discussion) Find all irreducible polynomials over F2 of degree at most 4.
You should justify your list.

(b) (HW) Find all all irreducible polynomials over F2 of degree 5. Use the
list from part (a) to explain your result. Notice any patterns in the list of
polynomials.

(c) (HW) Determine how many irreducible polynomials of degree 6 there are
over F2 based on part (a). Justify your answer briefly.

Exercises 5.4.2. (Discussion) The field F23 .

(a) Construct the field F8 using one of the polynomials from the previous prob-
lem that has the appropriate degree (there are two). Make a table showing
the powers of the primitive element, call it ⌘, and the corresponding vector
form, using the basis {1, ⌘, ⌘2}.

(b) Show that the polynomial that you did not choose also has roots in F8.

Exercises 5.4.3. (HW)

(a) One of the irreducible polynomials of degree 4 in 11.1(a) has roots which are
not primitive. Which one?

(b) Construct the field with 16 elements using one of the primitive irreducible
polynomials of degree 4: Make a table showing the powers of the primi-
tive element, call it ⌘, and the corresponding vector form, using the basis
{1, ⌘, ⌘2, ⌘3}. Give also the multiplicative order of each element and its min-
imal polynomial.
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(c) Identify the subfield F4.

(d) Factor over F4 the irreducible polynomial that you chose to construct F16.

(e) How many elements of F16 are primitive?

Exercises 5.4.4. (HW) The field F32 .

(a) Write a multiplication table for F3[x]/hx2 + x+ 2i. [You may omit 0. It may
be easier to take the elements in the order 1, x, x+1, x+2 followed by twice
each.]

(b) Find all irreducible polynomials of degree 2 over F3 and find their roots in
the table you constructed.

Exercises 5.4.5. (HW) Factoring a polynomial over di↵erent fields.

(a) Factor x9 � x over F3.

(b) Factor x5 + x
4 + 1 over F2 (it is reducible!), F4 and F8.

(c) Factor x16 � x over F2, F4, F8 and F16.

Exercises 5.4.6. Let n > m be positive integers and d = gcd(n,m). Show that the
intersection of Fpm and Fpn is Fpd as follows.

(a) Recall that the remainder xn � 1 divided by x
m
� 1 is xr � 1 where r is the

remainder when n is divided by m.

(b) Show that the gcd of xn � 1 and x
m
� 1 is xd � 1.

(c) (HW) Combine the previous results and the theorem that the roots of xp
n
�x

are the elements of Fpn to conclude that Fpd is a subfield of Fpn i↵ d divides
n. (Strictly speaking Fpn has a subfield isomorphic to Fpd . See 11.10.)

Exercises 5.4.7. (Optional)The field F81.

(a) (Discussion) The polynomials x2+x+2 and x
2+2x+2 are both irreducible

over F3. Can you construct F81 by using one of these polynomials and then
the other?

(b) (Optional) In a computer algebra system use m(x) = x
4 + x+ 2 and r(x) =

x
4 + 2x + 2 to construct two versions of F81. Using a brute force search,

find a root of m(x) in the second field and a root of r(x) in the first field.
These give isomorphisms between the two fields. Check by hand that each
composition is an automorphism of the appropriate version of F81.

(c) (Optional) Factor x80 � 1 over F3. For each irreducible factor a(x), find the
roots of a(x) in F3[x]/m(x).

Exercises 5.4.8. (Optional)The field of 64 elements.

(a) The polynomials m(x) = x
6 + x + 1 and r(x) = x

6 + x
5 + x

4 + x + 1 are
both irreducible over F2. Using a computer algebra system construct two
versions of F64, using m(x) for one and r(x) for the other. Using a brute
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force search, find a root of m(x) in the second field and a root of r(x) in the
first field. These give isomorphisms between the two fields. Check by hand
that each composition of the two isomorphisms is an automorphism of the
appropriate version of the field.

(b) Factor x63�1 over F2. For each irreducible factor a(x), find the roots of a(x)
in F2[x]/m(x). Use Sage, but also use your understanding of the theory.

(c) The field F64 can also be constructed as an extension of F4. Construct F4,
then factor x63�1 in F4[x]. Choose one of the factors of degree 3 to construct
F64.

(d) Now create F8 using an irreducible polynomial of degree 3 over F2, then
factor x

63
� 1, then create F64 using an irreducible polynomial of degree 2

in F8[x].

Exercises 5.4.9. (Challenge) The number of irreducible polynomials.

(a) Let a(n) denote the number of degree-n irreducible polynomials over Fp for
p prim4. Prove that

p
n =

X

d|n

d·a(d).

Hint: use the result about the factorization of xp
d
� x factors over Fpd and

about subfields of Fpn .

(b) Prove that

lim
n!1

a(n)

pn
= 0,

meaning that irreducible polynomials are “sparse” in Fp[x].

Exercises 5.4.10. (Challenge) The algebraic closure of Fp. This problem extends
11.6, which showed that we may consider Fpd as contained in Fpn if and only if
d|n.

(a) Let Fp =
S

t�1 Fpt . Prove that F is a field.

(b) Prove that Fp is algebraically closed.

(c) Prove that every element of Fp is algebraic over Fp so there is no algebraically
closed field properly contained in Fp.

(d) Conclude that Fp is the algebraic closure of Fpn for any n.

Exercises 5.4.11.

(a) Make a table showing the possible multiplicative orders and the number of
elements of each order for F64, F128, and F256. Relate this information to
subfields (refer to the previous problem).
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Exercises 5.4.12. Irreducible polynomials over Fp. Suppose you have formulas for
the number of irreducible monic polynomials of degree m over Fp for each m < n.
Using some combinatorial arguments you can then compute the number of monic
reducible polynomials of degree n. Subtracting this from the number of monic
polynomials of degree n yields the number of monic irreducible polynomials of
degree n.

(a) Show that the number of monic irreducible quadratics over Fp is (p2 � p)/2.

(b) Show that the number of monic irreducible cubics over Fp is (p3 � p)/3.

(c) You might want to guess at a general formula. A di↵erent counting method
yields the result more easily than the one above. Try this if you want, noting:

• For a 2 Fpn , a is in no proper subfield i↵ the minimal polynomial for a
has degree n.

• Each monic irreducible of degree n has n distinct roots in Fpn .

Exercises 5.4.13. For a given prime p, let I(d) be the set of irreducible polynomials
of degree d over Fp.

(a) Show that for n > 0, Y

d|n

Y

f2I(d)

f = x
p
n
� x

(b) Show that for any ↵ 2 Fq,

1 + ↵+ ↵
2 + ↵

3 + · · ·+ ↵
q�2 =

8
><

>:

1 if ↵ = 0

�1 if ↵ = 1

0 otherwise

Exercises 5.4.14. Simplifying the task of finding irreducibles.

(a) Let a 2 F⇤
q . Show that there is an automophism ma of Fq[x] that fixes

elements of Fq and takes x to ax.

(b) Argue that f(x) is irreducible if and only if ma(f(x)) is.

(c) Show how this may be used to simplify the search for irreducible polynomials
of degree d to those of the form x

d + x
d�1 + · · · or those of the form x

d +
0xd�1 + · · ·

(d) In the second case (the coe�cient of x
d�1 is 0) how can the simplifying

technique be extended?

(e) Show that f(x) is primitive if and only if ma(f(x)) is primitive.

(f) Apply these result to small fields to find all irreducible polynomials of degree
2, 3 or 4 over Fq. Then find the primitive polynomials.
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