Linear Algebra

Math 254
Michael E. O'Sullivan
Review for first exam
October 1, 2009

Solving Linear Systems. Know how to:

- Transform a system of linear equations into a matrix equation.
- Transform a traffic flow problem into a linear system, and then into a matrix equation.
- Solve a system using Gaussian elimination.
- Explain the steps that you use (row replacement steps and row exchange steps).
-
- Write a vector x as a sum of vectors v_{1}, \ldots, v_{m} (or check that it can't be done) using Gaussian elimination.
- Check whether vectors v_{1}, \ldots, v_{n} are linearly independent using Gaussian elimination.
- Invert a matrix using Gaussian elimination.

The Language of Linear Transformations. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be the linear transformation given by the $m \times n$ matrix A. Let $b \in \mathbb{R}^{n}$.

- Be able to translate tranformations on \mathbb{R}^{2}, stated as rotations, reflections, or dilations/contractions into matrix form. Be able to work with diagrams of the image of a transformation $\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ (§1.9\#1-14).
- The set of x satisfying $T(x)=b$ is the same set as the set of x satisfying $A x=b$. be able to translate back and forth between the two: (§1.9\#17-28).
- Theorem 6: Let p be one solution to $A x=b$. The solution set of $A x=b$ is all $p+v_{h}$ where v_{h} varies among the solutions to $A x=0$.
- Theorem 11: T is a one-to one function if and only if the only solution to $A x=0$ is the zero vector in \mathbb{R}^{n}. [This follows directly from Theorem 6 . When there is only one homogeneous solution, there is at most one solution to $A x=b$.]
- There are many ways to express the same essential idea. In the following table, as you read across each row you see different ways of saying a particular concept. The final line contains most of the Invertible Matrix Theorem (Theorem 8 in Chapter 2).

Table 1: Equivalent properties for an $m \times n$ matrix A

$\begin{aligned} & \hline A x=b \text { has a solution } \\ & \text { for all } b \in \mathbb{R}^{m} \end{aligned}$	RREF of A has a pivot in each row	The columns of A span \mathbb{R}^{m}	The linear transformation $x \longmapsto A x$ is onto	There is an $m \times m$ matrix Z such that $Z A=I_{m}$	Note: $n \geq m$
$A x=0$ has one solution, $x=0$	RREF of A has a pivot in each column	The columns of A are linearly independent in \mathbb{R}^{m}	The linear transformation $x \longmapsto A x$ is one-toone	There is an $n \times n$ matrix Z such that $A Z=I_{n}$	Note: $n \leq m$
$A x=b$ has exactly one solution for each $b \in \mathbb{R}^{m}$	RREF of A has a pivot in each row and each column	The columns of A are linearly independent and span \mathbb{R}^{m}	The linear transformation $x \longmapsto A x$ is one-toone and it onto	there is a $n \times n$ matrix Z such that $A Z=Z A=I_{n}$	Note: $n=m$

