Linear Algebra Math 254 Michael E. O'Sullivan Review for first exam October 1, 2009

Solving Linear Systems. Know how to:

- Transform a system of linear equations into a matrix equation.
- Transform a traffic flow problem into a linear system, and then into a matrix equation.
- Solve a system using Gaussian elimination.
- Explain the steps that you use (row replacement steps and row exchange steps).
- •
- Write a vector x as a sum of vectors v_1, \ldots, v_m (or check that it can't be done) using Gaussian elimination.
- Check whether vectors v_1, \ldots, v_n are linearly independent using Gaussian elimination.
- Invert a matrix using Gaussian elimination.

The Language of Linear Transformations. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be the linear transformation given by the $m \times n$ matrix A. Let $b \in \mathbb{R}^n$.

- Be able to translate transformations on ℝ², stated as rotations, reflections, or dilations/contractions into matrix form. Be able to work with diagrams of the image of a transformation ℝ² → ℝ² (§1.9#1-14).
- The set of x satisfying T(x) = b is the same set as the set of x satisfying Ax = b. be able to translate back and forth between the two: (§1.9#17-28).
- Theorem 6: Let p be one solution to Ax = b. The solution set of Ax = b is all $p + v_h$ where v_h varies among the solutions to Ax = 0.
- Theorem 11: T is a one-to one function if and only if the only solution to Ax = 0 is the zero vector in \mathbb{R}^n . [This follows directly from Theorem 6. When there is only one homogeneous solution, there is at most one solution to Ax = b.]
- There are many ways to express the same essential idea. In the following table, as you read across each row you see different ways of saying a particular concept. The final line contains most of the Invertible Matrix Theorem (Theorem 8 in Chapter 2).

Table 1: Equivalent properties for an $m \times n$ matrix A

Ax = b has a solution	RREF of A has a	The columns of A	The linear transforma-	There is an $m \times m$	Note:
for all $b \in \mathbb{R}^m$	pivot in each row	span \mathbb{R}^m	tion $x \longmapsto Ax$ is onto	matrix Z such that	$n \ge m$
				$ZA = I_m$	
Ax = 0 has one solu-	RREF of A has a	The columns of A are	The linear transforma-	There is an $n \times n$ ma-	Note:
tion, $x = 0$	pivot in each column	linearly independent	tion $x \longmapsto Ax$ is one-to-	trix Z such that	$n \leq m$
		in \mathbb{R}^m	one	$AZ = I_n$	
Ax = b has exactly one	RREF of A has a	The columns of A are	The linear transforma-	there is a $n \times n$ ma-	Note:
solution for each $b \in \mathbb{R}^m$	pivot in each row and	linearly independent	tion $x \longmapsto Ax$ is one-to-	trix Z such that	n = m
	each column	and span \mathbb{R}^m	one and it onto	$AZ = ZA = I_n$	