Linear Algebra Math 254 Michael E. O'Sullivan Review for third exam November 15, 2009

Be able to use the following terminology

- eigenvalue, eigenvector (be able to define these also).
- basis for eigenspace.
- characteristic polynomial, characteristic equation.
- similar matrices.

Eigenvectors and Diagonalization

- Let A be an $n \times n$ matrix. You should be able to do the following.
 - Compute the characteristic polynomial of A.
 - Find the eigenvalues of A, when the characteristic polynomial is easily factored.
 - Find a basis for the eigenspace for each eigenvector.
 - Diagonalize A given n linearly independent eigenvectors.
 - When A is 2 × 2, and has complex eigenvalues, find a rotation-scaling matrix that is similar to A. That is, if $a \pm bi$ are the eigenvalues, find P such that $P^{-1}AP = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.
- Be able to use and understand the meaning of the main theorems.
 - -A is diagonalizable if and only if it has n linearly independent eigenvectors.
 - If A has n distinct eigenvalues it is diagonalizable.
 - A matrix A is invertible if and only if 0 is *not* an eigenvalue of A.
 - Similar matrices have the same characteristic polynomial, and therefore the same eigenvalues with the same multiplicities.
- Be able to apply eigenvector analysis to a dynamical system.
 - Be able to classify a 2 × 2 matrix A:
 Is the origin an attractor, a repellor, or a saddle point? Is A a rotation-contraction or a rotation-dilation? The latter cases occur when the eigenvalues are not real.
 - Be able to identify the long term behavior of a dynamical system, given the eigenvalues and eigenvectors.
 - Be able to write a transition matrix for a dynamical system given information about population changes.