Linear Algebra

Math 254
Michael E. O'Sullivan
Review for third exam
November 15, 2009

Be able to use the following terminology

- eigenvalue, eigenvector (be able to define these also).
- basis for eigenspace.
- characteristic polynomial, characteristic equation.
- similar matrices.

Eigenvectors and Diagonalization

- Let A be an $n \times n$ matrix. You should be able to do the following.
- Compute the characteristic polynomial of A.
- Find the eigenvalues of A, when the characteristic polynomial is easily factored.
- Find a basis for the eigenspace for each eigenvector.
- Diagonalize A given n linearly independent eigenvectors.
- When A is 2×2, and has complex eigenvalues, find a rotation-scaling matrix that is similar to A. That is, if $a \pm b i$ are the eigenvalues, find P such that $P^{-1} A P=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
- Be able to use and understand the meaning of the main theorems.
- A is diagonalizable if and only if it has n linearly independent eigenvectors.
- If A has n distinct eigenvalues it is diagonalizable.
- A matrix A is invertible if and only if 0 is not an eigenvalue of A.
- Similar matrices have the same characteristic polynomial, and therefore the same eigenvalues with the same multiplicities.
- Be able to apply eigenvector analysis to a dynamical system.
- Be able to classify a 2×2 matrix A :

Is the origin an attractor, a repellor, or a saddle point? Is A a rotation-contraction or a rotation-dilation? The latter cases occur when the eigenvalues are not real.

- Be able to identify the long term behavior of a dynamical system, given the eigenvalues and eigenvectors.
- Be able to write a transition matrix for a dynamical system given information about population changes.

