Linear Algebra

Math 254
Michael E. O'Sullivan
Topics for Final Exam
December 5, 2009

Solving Linear Systems

- Transform a system of linear equations into a matrix equation.
- Solve a system using Gaussian elimination.
- Explain the steps that you use (switching rows, scaling a row, adding a row to another one).
- Identify the matrix operation corresponding to each step.
- Write a vector x as a sum of vectors v_{1}, \ldots, v_{m}.
- Find the RREF form of a matrix.
- Find a basis for the nullspace of a matrix.
- Find a basis for the column space of a matrix.
- Find a basis for the row space of a matrix.
- Invert a matrix using Gaussian elimination.

Vector Space Terminology

- Definitions you should know:
- linear combination, span, linearly independent, basis;
- subspace, linear transformation;
- rank, nullspace (a.k.a. kernel), column space(aka image) of a matrix;
- orthogonal, orthonormal basis,
- eigenvalue, eigenvector, eigenspace.
- Decide whether a function is a linear transformation.
- Be able to state and use the Rank Theorem (Sec. 4.6 Thm 14).
- Know the equivalences in the Inverse Matrix Theorems (Sec. 2.3 Thm 8, Sec 4.6 p. 267).

Orthogonality

- In \mathbb{R}^{2}, be able to identify all orthonormal bases.
- Find the components of a vector relative to a subspace. Given $V \subseteq \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$, decompose x, relative to V, as $x=\hat{x}+z$ with $\hat{x} \in V$ and $z \in V^{\perp}$.
- Find the components of $x \in V$ relative to an orthonormal basis of V.
- Transform a given basis to an orthonormal basis using Gram-Schmidt.
- Write the $Q R$ decomposition of a matrix.

Determinants

- Know the basic properties of determinants (Sec. 3.2).
- Similar matrices have the same determinant.
- Compute an arbitrary 2×2 or 3×3 determinant.
- Compute the determinant of larger matrices with special conditions (e.g. lots of zeros).

Eigenvalues and Eigenvectors

- Find the characteristic polynomial of an $n \times n$ matrix A.
- Find the eigenvalues for 2×2, and (doable) 3×3 matrices and triangular matrices.
- Find the algebraic multiplicity and the geometric multiplicity of each eigenvalue.
- Find a basis for the eigenspace associated to each eigenvalue.
- Diagonalize a matrix A when it is possible.
- Understand diagonalization as change of basis.
- Determine the matrix for a population change problem as Sec. 4.9 and Ch. 5.
- Compute long term behavior of a discrete dynamical system using eigenvalues and eigenvectors.

Here are a few exercises.

1. Let $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$.
(a) Write $y=\left[\begin{array}{c}2 \\ -3 \\ -10\end{array}\right]$. as a linear combination of the v_{i}. Use Gaussian elimination and identify each step as a matrix multiplication.
(b) Find the kernel and image of the transformation $T(x)=A x$.
(c) What are the nullity and the rank of A.
(d) Find the inverse of A.
(e) Solve part (a) using A^{-1}.
2. Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
2 & 4 & 3 & 1 \\
4 & 8 & 5 & 3
\end{array}\right]
$$

(1) Find a basis for the kernel of find a basis for the image of the transformation $T(x)=A x$.
(b) What are the nullity and the rank of A ?
3. Classify the geometrical properties of the following matrices (look at what each does to the standard basis).

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad D=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad E=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

4. Find the $Q R$ factorization of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

5. Compute the determinant.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 3 \\
1 & 0 & 2 & 2 \\
1 & 0 & 1 & 1 \\
1 & 1 & -1 & 0
\end{array}\right]
$$

6. Diagonalize each matrix if possible

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

