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1 Trace of an Operator

Let V be an n-dimensional vector space over C.

Definition 1.1. Let ϕ : V −→ V be a linear transformation with eigenval-
ues λ1, . . . , λn. The trace of ϕ is Tr(ϕ) =

∑n
i=1 λi.

Let A be an n× n matrix the trace of A is Tr(A) =
∑n

i=1 aii

We will show that for any basis U of V , the trace of U [ϕ]U is equal to
Trϕ, but for now, the trace of a matrix is defined independently of the trace
of an operator.

Proposition 1.2. Let A,B ∈Mn. Tr(AB) = Tr(BA).

Proof. (AB)ik =
∑n

j=1 aijbjk so

Tr(AB) =
n∑
i=1

(AB)ii =
n∑
i=1

n∑
j=1

aijbji

=
n∑
i=1

n∑
j=1

bjiaij = Tr(BA)

Corollary 1.3. If A and B are similar, Tr(A) = Tr(B).
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Proof. Let A = S−1BS. Then

Tr(A) = Tr
(

(S−1B)S
)

= Tr
(
S(S−1B)

)
= Tr

(
SS−1)B)

)
= Tr(B)

Now we can link the two notions of trace.

Corollary 1.4. The trace of a matrix is the sum of the eigenvalues of the
matrix.

Let ϕ be a linear transformation on V . For any basis U of the vector
space V , U [ϕ]U = Tr(ϕ).

Proof. Let A be an n×n matrix with eigenvalues λ1, . . . , λn. Let S be such
that S−1AS is in Jordan form. Then Tr(A) = Tr(S−1AS) by the previ-
ous corollary. The Jordan matrix is upper triangular with the eigenvalues
λ1, . . . , λn on the diagonal. latter is the sum of the eigenvalues of A.

Let ϕ be a linear transformation on V . Different bases for V will yield
different matrices for ϕ, but they will all be similar, with the same eigenval-
ues as ϕ.

Proposition 1.5. Trace is a linear operator: Tr(A + B) = Tr(A) + Tr(B)
for A,B ∈Mn.

Proof. Clear from the trace formula for matrices.

Corollary 1.6. For A,B ∈ Mn, Tr(AB − BA) = 0. Consequently, it is
impossible for AB −BA = I.

Proof. We have Tr(AB −BA) = Tr(AB)−Tr(BA) = 0 by linearity and an
earlier corollary.

The expression AB−BA is called the commutator of A and B (when it is
nonzero A,B don’t commute, so it is a measure of their noncommutability).
This from

{\tt http://en.wikipedia.org/wiki/Uncertainty_principle}

“In matrix mechanics, observables such as position and momentum are rep-
resented by self-adjoint operators. When considering pairs of observables,
one of the most important quantities is the commutator.” For example,
there is an operator for position and an operator for momentum and their
commutator gives Heisenberg’s uncertainty principle. Axler says that the
previous corollary has important consequences in quantum theory.

2



2 Determinants

Definition 2.1. The determinant of a matrix is defined to be Det(A) =∑
σ∈Sn

(−1)sgn(σ)
∏n
i=1 ai,σ(i).

The following propositions is in most textbooks.

Proposition 2.2. There are three fundamental properties of determinants.

(1) Det(I) = 1 for the identity matrix I.

(2) Det is alternating. If we transpose to columns (or rows) of A the
determinant of the new matrix has determinant −Det(A).

(3) Det is multilinear on the columns (or rows). This means, relative to
the first column (and similarly for the other columns),

Det
( [
u1 + av1 u2 u3 . . . un

] )
= Det

( [
u1 u2 u3 . . . un

] )
+ aDet

( [
v1 u2 u3 . . . un

] )
These properties uniquely define the determinant: the only function on ma-
trices with these properties is the determinant.

An important consequence of the alternating property is that a matrix
with two rows that are equal has determinant 0.

Proposition 2.3. Det(AB) = Det(A) Det(B)

Proof. Let b1, . . . , bn be the columns of B and let e1, . . . , en be the standard
basis vectors.

Det(AB) = Det
( [
Ab1 Ab2 Ab3 . . . Abn

] )
Using multilinearity and Abi =

∑n
i=1 bmi,iAemi

Det(AB) =
n∑

m1=1

n∑
m2=1

· · ·
n∑

mn=1

n∏
i=1

bmi,i Det
( [
Aem1 Aem2 Aem3 . . . Aemn

] )
If any mi = mj the determinant will be 0, so we may restrict to m1, . . . ,mn

being a permutations of 1, . . . , n

=
∑
σ∈Sn

n∏
i=1

bσ(i),i Det
( [
Aeσ(1) Aeσ(2) Aeσ(3) . . . Aeσ(n)

] )
=
∑
σ∈Sn

n∏
i=1

bσ(i),i sgn(σ) Det(A)

= Det(A) Det(B)
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Corollary 2.4. If A and B are similar then Det(A) = Det(B).

Proof. Let A = S−1BS. Then

Det(A) = Det
(

(S−1B)S
)

= Det
(
S(S−1B)

)
= Det

(
SS−1)B)

)
= Det(B)

Corollary 2.5. Let λ1, . . . , λn be the eigenvalues of A, and let p(x) = xn +
pn−1x

n−1 + · · · + p1x + p0 =
∏n
i=1(x − λi) be the characteristic polynomial

of A.

Det(A) =
n∏
i=1

λi = (−1)np0

Proof. The characteristic polynomial has roots λi so factors as shown. The
constant term is

∏n
i=1(−λi). Since A is similar to its Jordan form its de-

terminant is the same as its Jordan from. The determinant of the Jordan
form is the product of the eigenvalues, because the determinant of any upper
triangular matrix is the product of the diagonal entries.

Corollary 2.6. The characteristic polynomial of A is pA(t) = det(xI −A).

Proof. For any complex number z, the eigenvalues of zI−A are z−λi, so the
constant term of the characteristic polynomial of zI − A is

∏n
i=1(−1)n(z −

λi) = Det(zI − A). Now consider the indeterminate x, it is clear that∏n
i=1(−1)n(x− λi) = Det(xI − A), since this formula holds when x is sub-

stituted with any complex number.

3 Generalizations of Trace and Determinant

Definition 3.1. Let I, J ⊆ {1, . . . , n} and let k = |I| and m = |J |. By
A(I, J) we indicate the k × m submatrix of A formed from the rows in I
and the columns in J . We are particularly interested in A(I, I), which is
called a principal submatrix of A. For fixed k there are

(
n
k

)
principal k × k

submatrices of A. The principal minor associated to I is Det(A(I, I).

Definition 3.2. Let

Ek(A) =
∑

I⊆{1,...,n}
|I|=k

Det(A(I, I))
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Observe that En(A) = Det(A), and E1(A) =
∑n

i=1 aii = Tr(A). Simi-
larly En−1 is the sum of the n principal submatrices obtained by eliminating
the ith row and ith column of A. By convention, we set E0(A) = 1.

Proposition 3.3. Det(xI −A) =
∑n

k=0 x
n−k(−1)kEk(A)

Proof. In class

Definition 3.4. The kth elementary symmetric function of λ1, . . . , λn is

Sk(λ1, . . . λn) =
∑

I⊆{1,...,n}
|I|=k

∏
i∈I

λi =
∑

1≤i1<i2<···<ik≤n
λi1λi2 . . . λik

Proposition 3.5.

pA(x) =
∏

(x− λi) =

n∑
k=0

λn−k(−1)kSk(λ1, . . . , λn)

Corollary 3.6. Let A ∈ Mn have eigenvalues λ1, . . . , λn. Then Ek(A) =
Sk(λ1, . . . , λn).

Proof.

pA(x) =

n∏
i=1

(x− λi) =
∑

xn−k(−1)kSk(λ1, . . . , λn)

But also

pA(x) = Det(xI −A) =
∑

xn−k(−1)kEk(A)

Consequently Ek(A) = Sk(λ1, . . . , λn).
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