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1 Normal Matrices

All matrices are in Mn(C). A∗ is the conjugate transpose.
We recall several definitions and a new term “normal.”

Definition 1.1. A ∈Mn(C) is

• normal when AA∗ = A∗A.

• Hermitian when A∗ = A.

• skew- Hermitian when A∗ = −A.

• unitary when A∗ = A−1.

A real unitary matrix is called orthogonal. A real hermitian matrix is called
symmetric.

Exercises 1.2.

(a) Hermitian, skew-hermitian, unitary and diagonal matrices are all nor-
mal.

(b) Check that the following two matrices are normal, but they are not
unitary, nor Hermitian nor skew-Hermitian.[

i 1
1 i

] [
1 −1
1 1

]
(c) Show that a normal 2 × 2 real matrix is either hermitian, skew-

hermitian or a constant multiple of a rotation matrix (i.e ).
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(d) The set of normal matrices is closed under scalar multiplication, but
is not closed under addition and is not closed under multiplication.

(e) The set of normal matrices is closed under unitary conjugation.

(f) A ∈MmC and B ∈MnC are normal iff A⊕B is.

(g) Suppose A and B are real normal matrices satisfying AB∗ = B∗A.
Show that A+B and AB are both normal.

Lemma 1.3. Suppose that T is upper (or lower) triangular and normal.
Then T is a diagonal matrix.

Proof. We proceed by induction, the case n = 1 is immediate. Let T be
n× n normal and upper triangular.

T =


t1,1 t1,2 t1,3 . . . t1,n−1 t1,n
0 t2,2 t2,3 . . . t2,n−1 t2,n
0 0 t3,3 . . . t3,n−1 t3,n
. . . . . . . . . . . .
0 0 0 . . . 0 tn,n

 T ∗ =


t1,1 0 0 . . . 0 0
t1,2 t2,2 0 . . . 0 0
t1,3 t2,3 t3,3 . . . 0 0
. . . . . . . . . . . .
t1,n t2,n t3,n . . . tn−1,n tn,n


Then (T ∗T )1,1 = t1,1t1,1, which is real and nonnegative. On the other hand,

(TT ∗)1,1 = t1,1t1,1 + t1,2t1,2 + · · ·+ t1,nt1,n =

n∑
i=1

|t1,i|2

This is a sum of nonnegative reals. Equating these two expressions we get
|t1,1|2 =

∑n
i=1|t1,i|2, so |t1,i| = 0 for i > 1. Thus T has the form

T =

[
t1,1 0
0 T ′

]
Where T ′ is upper triangular and normal (by an exercise, A⊕ B is normal
implies A and B are normal). Applying the induction hypothesis, T ′ is
diagonal, which gives the result.

Exercises 1.4.

(a) Show that for any matrix A, Tr(A∗A) =
∑n

i=1

∑n
j=1|ai,j |2. We will

write this more concisely as
∑n

i,j=1|ai,j |2.

Lemma 1.5. If A,B are unitarily equivalent then
∑n

i,j=1|ai,j |2 =
∑n

i,j=1|bi,j |2.
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Proof. Let A = U∗BU .

n∑
i,j=1

|ai,j |2 = Tr(A∗A) = Tr(U∗B∗UU∗BU)

= Tr(U∗B∗BU) = Tr(B∗B) =
n∑

i,j=1

|bi,j |2

Note that U∗ = U−1 so that B∗B is similar to U∗B∗BU and therefore these
matrices have the same trace.

Theorem 1.6 (Spectral). The following are equivalent for A ∈ Mn with
eigenvalues λ1, . . . , λn.

(1) A is unitarily diagonalizable.

(2) A is normal.

(3)
∑n

i,j=1|ai,j |2 =
∑n

i=1|λi|2.

Suppose A is unitarily diagonalizable, A = U∗ΛU . Then

A∗A = U∗Λ∗UU∗ΛU = U∗Λ∗ΛU = U∗ΛΛ∗U = AA∗

Thus A is normal. This computation also showed A∗A is similar to Λ∗Λ and
therefore

n∑
i,j=1

|ai,j |2 = Tr(A∗A) = Tr Λ∗Λ =
n∑
i=1

|λi|2

Now we show that either (2) or (3) imply that A is unitarily diagonal-
izable. Any matrix is unitarily triangularizable, so let A = U∗TU with U
unitary and T upper triangular.

Suppose A is normal. Since T is similar to A it is also normal. By the
Lemma 1.3, it is diagonal. Thus A is unitarily diagonalizable.

Now suppose
∑n

i,j=1|ai,j |2 =
∑n

i=1|λi|2. By the Lemma 1.5

n∑
i=1

|λi|2 =

n∑
i,j=1

|ai,j |2

=

n∑
i,j=1

|ti,j |2
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and since the diagonal entries of T are the eigenvalues of A

=
n∑
i=1

|λi|2 +
n∑
i=1

n∑
j=i+1

|ti,j |2

From the first and last lines and the nonnegativity of |ti,j |2 we can conclude
that ti,j = 0. So T is diagonal.

Proof.

The following results are immediate, but worth explicitly recognizing.
Some are properties that we showed for Hermitian matrices, so we see they
also apply to normal matrices.

Corollary 1.7. Let A be normal.

• A normal matrix is nondefective. For each eigenvalue, algebraic mul-
tiplicity = geometric multiplicity. that is, the eigenspace equals the
whole generalized eigenspace.

• The minimal polynomial of A equals the characteristic polynomial of
A.

• For any eigenvalue λ, the eigenspace of λ is equal to the generalized
eigenspace of λ.

• If A is normal and x is a right eigenvector associated to λ then x∗ is
a left eigenvector for λ∗

• If x and y are eigenvectors associated to distinct eigenvalues then x
and y are orthogonal.

We can now say more about unitary matrices.

Theorem 1.8. Let A ∈Mn. The following are equivalent.

(1) A is unitary.

(2) A is normal and has eigenvalues of modulus 1.

(3) ‖Av‖ = ‖v‖ for all v ∈ Cn.

4



Proof. We have already shown the equivalence of (1) and (3). If A is unitary
it is normal, and is therefore unitarily diagonalizable, say U∗AU = Λ. Then

Λ∗Λ = U∗A∗UU∗AU = U∗A∗AU = U∗U = I

So the eigenvalues have modulus 1. Conversely, A is normal and the eigen-
values have modulus 1, then it is unitarily diagonalizable U ∗AU = Λ. Since
Λ is unitary, and A is unitarily similar to it A is also unitary. Explicity,

A∗A = U∗Λ∗UU∗ΛU = U∗Λ∗ΛU = U∗U = I

We can also say more about Hermitian matrices.

Theorem 1.9. Let A ∈Mn. The following are equivalent.

(1) A is Hermitian.

(2) A is normal and has real eigenvalues.

(3) v∗Av is real for all v ∈ Cn.

Proof. We have already proven that A Hermitian implies (2) and (3). If
A is normal and has real eigenvalues then it is unitarily diagonalizable,
A = UΛU∗ with Λ ∈ Mn(R) . Then A is unitarily similar to a Hermitian
matrix, so it is also Hermitian.

Suppose that v∗Av is real for all v ∈ Cn. Then (u+v)A(u+v)−u∗Au−
v∗Av is real for any u, v ∈ Cn. This is equal to u∗Av + v∗Au. Set u = ei
and v = ej to obtain ai,j + aj,i is real. This shows Im(ai,j) = − Im(aj,i). Set
u = iei and v = ej to obtain −iai,j + iaj,i is real. This shows Re(ai,j) =
Re(aj,i). Thus aj,i = ai,j and A is Hermitian.

For z ∈ C, writing z > 0 means that z is real and positive (and similarly
z ≥ 0 means nonnegative).

Corollary 1.10. Let A be Hermitian.

(1) v∗Av ≥ 0 for all v ∈ Cn, iff the eigenvalues of A are nonnegative.

(2) v∗Av > 0 for all nonzero v ∈ Cn, iff the eigenvalues of A are positive.
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Proof. If v∗Av ≥ 0 for all v ∈ Cn, then in particular for an eigenpair λ, u we
have 0 ≤ u∗Au = λu∗u. Since u∗u is positive for nonzero u, we must have
λ ≥ 0. Furthermore if the inequality is strict, as assumed in (2), then λ > 0.

If A is Hermitian, then by the spectral theorem it is unitarily diagonal-
izable, so A = U ∗ ΛU . Suppose the eigenvalues of A are all nonnegative.
Then

v∗Av = v∗U∗ΛUv = (Uv)∗Λ(Uv) =
n∑
i=1

λixix

where x = Uv. Since all the λi are nonnegative, and so is xixi, we must
have v∗Av ≥ 0.

If all the λi are actually positive, and v is a nonzero vector, then x = Uv
will be nonzero as well. Thus

∑n
i=1 λixix will have a strictly positive term

and v∗Av > 0 for all nonzero x.

2 Real normal matrices

I will leave aside the proof of this, but wanted you to see the result.

Theorem 2.1. For A ∈Mn(R), TFAE

(1) A is symmetric.

(2) There exists an orthogonal matrix Q ∈ Mn(R) and a real diagonal
matrix D such that QTAQ = D

(3) A is normal and all eigenvalues of A are real.

(4) There exists an orthonormal basis of Rn consisting of eigenvectors of
A.

3 Unitary Similarity

Definition 3.1. We say A is unitarily similar to B when there exists a
unitary matrix U such that A = U∗BU . We write A ∼U B.

Exercises 3.2.

(a) Unitary similarity is an equivalence relation.

(b) If A ∼U B then A ∼ B, but matrices can be similar without being
unitarily similar. (Find an example).

(c) If A ∼U B then A∗ ∼U B∗ and AA∗ ∼U BB∗.
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We want to generalize the last result.

Definition 3.3. A word , W (x, y), is an arbitrarily long product of xs and
ys. For example W (x, y) = xyxxxyyx is a word of degree 8. Evaluating this
word W (x, y) at A,A∗ gives the matrix AA∗AAAA∗A∗A.

Proposition 3.4. If A ∼U B then, for any word W (x, y), W (A,A∗) ∼U
W (B,B∗). Furthermore, Tr(W (A,A∗)) = Tr((W (B,B∗)).

Proof. Let A = U∗BU and notice A∗ = U∗B∗U . We can prove formally
that W (A,A∗) = U∗W (B,B∗)U for any word W (x, y) via induction on the
degree of the word. The trace formula follows from similar matrices having
equal traces.

The claim is obvious for degree 1. Suppose it is true for words of degree d,
let W (x, y) have degree d+1 and suppose the last letter of W (x, y) is x (the
proof for y is analogous). Then W (x, y) = W ′(x, y)x with W ′(x, y) having
length d. By the induction hypothesis, W ′(A,A∗) = U∗W ′(B,B∗)U . So,

W (A,A∗) = W ′(A,A∗)A = U∗W ′(B,B∗)UU∗BU = U∗W (B,B∗B)U = W (B,B∗)

Theorem 3.5 (Sprecht). If Tr(W (A,A∗) = Tr(W (B,B∗) for all words
W (x, y), then A ∼U B.

[Peary] If Tr(W (A,A∗) = Tr(W (B,B∗) for all words W (x, y) of degree
at most 2n2, then A ∼U B.

Horn does not prove Sprecht’s (nore Peary’s) result. I don’t know if
there is a canonical for unitary similarity classes, analogous to Jordan form
for similarity classes.

4 Miscellaneous

At the end of Section 2.1 Horn brings up a generalization of unitary matrices:
instead of requiring that U−1 = U∗, consider A similar to A∗. I’m not sure
if there is some reason for interest in this idea, or it is just a curiosity. I
found Theorem 2.1.9 a bit hard to follow, so I broke it into pieces.

Lemma 4.1. Let A ∈ Mn. Let α be such that −α/α is not an eigenvalue
of A. Then (α+ αA) is invertible.
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Proof. Let x be a nonzero vector in Cn.

(α+ αA)x = 0⇐⇒ Ax = −α
α
x

⇐⇒ −α
α

is an eigenvalue of A

Choosing α as in the statement of the theorem guarantees αI+αA is trivial
nullspace and is therefore invertible.

Corollary 4.2. Let S be invertible. There is a θ ∈ [0, 2π) such that (Sθ +
Sθ)∗ is invertible. Here Sθ = eiθS.

Proof. Apply the previous Lemma, let α = eiθ be such that −α/α = −e−2iθ
is not be an eigenvalue of S−1S∗. Then eiθI + e−iθS−1S∗ is invertible.
Multiply by S to get Sθ + S∗θ is invertible.

Theorem 4.3. Let A be invertible. A−1 ∼ A∗ if and only if A = B−1B∗

for some invertible matrix B.

Proof. Suppose A = B−1B∗. Then

B−1(B−1B∗)B = B−1(BB−1)∗B = (B−1)∗B = (B−1B∗)−1

So B−1A∗B = A−1, showing A∗ is similar to A−1.
Conversely, suppose that A∗ is similar to A−1. We will find an invertible

Hermitian matrix H such that H = A∗HA. Then choose α such that
αI +αA∗ is invertible. Set B = (αI +αA∗)H. Then B is invertible since it
is the product of two invertible matrices.

BA = (αI + αH)A = αHA+ αH

= H(αA+ αI) = B∗

Therefore A = B−1B∗.
To get H we know A∗ = SA−1S−1 for some S. Choose θ so that Sθ +S∗θ

is invertible. Then A∗ = SθA
−1S−1θ so

Sθ = A∗SθA

S∗θ = A∗S∗θA

Adding these two equations

Sθ + S∗θ = A∗(Sθ + S∗θ )A

Thus H = Sθ +S∗θ is Hermitian and invertible and satisfies H = A∗HA.
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5 Positive Definite Matrices

Definition 5.1. A Hermitian matrix A ∈ Mn is positive definite when
v∗Av > 0 for all nonzero v ∈ Cn. It is positive semi-definite when v∗Av ≥ 0
for all nonzero v ∈ Cn.

Here we follow the convention that z > 0 for z ∈ C means that z is real
and positive.

Exercises 5.2.

(a) Any principal sub matrix of a positive definite matrix is positive defi-
nite (and similarly for positive semi-definite).

(b) The trace and determinant of all principal minors are positive.

(c) For any i 6= j, aiiajj > |aij |2.
(d) The set of positive definite matrices is closed under addition and scalar

multiplication by positive real numbers. It doesn’t form a vector space,
but is a union of rays from the origin (the 0 matrix) and is called a
cone.

(e) Applying our results on normal matrices, a positive definite matrix A
has positive eigenvalues and is unitarily diagonalizable, while a semi-
definite matrix may have 0 eigenvalues.

(f) The definition could be rephrased to say A is normal and v∗Av > 0,
since these imply that A is Hermitian.

(g) Let A ∈Mn be positive definite. For any C ∈Mn,m, C∗AC is positive
definite and rk(C∗AC) = rk(C).

For a nonsquare matrix D ∈ Mn,m I will say that D is diagonal when
for i 6= j, di,j = 0.

Theorem 5.3 (Singular Value Decomposition[H2). 2.6.3] Let A ∈ Mn,m

with m ≥ n and r = rk(A). There is a unique diagonal matrix Σ ∈ Mn,m

with σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σn = 0, and there are
unitary matrices U ∈Mn and W ∈Mm such that

A = UΣW

The parameters σ1, . . . , σr are the nonzero eigenvalues of A∗A, arranged
in decreasing order. They are also the nonzero eigenvalues of AA∗.

The σi are called the singular values of A. Exactly r = rk(A) of them are
nonzero. They are uniquely defined, since they are the nonzero eigenvalues
of AA∗. It is easy to check that AA∗ is positive semi-definite.
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