Mike O'Sullivan
Department of Mathematics
San Diego State University

Math 623: Matrix Analysis Schur's triangularization theorem

Theorem 0.1. Let $A \in \mathcal{M}_{n}(\mathbb{R})$. There is a real orthogonal matrix Q such that $Q^{T} A Q$ has the form

$$
\left[\begin{array}{cccccc}
B_{1} & * & * & \ldots & * & * \\
0 & B_{2} & * & \ldots & * & * \\
0 & 0 & B_{3} & \ldots & * & * \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & B_{s}
\end{array}\right]
$$

where each B_{i} is either an eigenvalue of A (a 1×1 matrix), or $B_{i}=R^{-1} C(\lambda) R$ for a non-real eigenvalue λ of A.

Proof. We proceed by induction, assuming the statement of the theorem is true for square matrices of dimension less than n. Let $A \in \mathcal{M}_{n}(\mathbb{C})$. If A has a real eigenvalue λ, with eigenvector u, we can proceed as in the complex case by extending to an orthonormal basis u, v_{2}, \ldots, v_{n} and applying the induction hypothesis.

Suppose that A has no real eigenvalues, and let $\lambda, \bar{\lambda}$ be a conjugate pair of eigenvalues. From the observation we made in class,

$$
A\left[\begin{array}{ll}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right]=\left[\begin{array}{ll}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Re} \lambda & \operatorname{Im} \lambda \\
-\operatorname{Im} \lambda & \operatorname{Re} \lambda
\end{array}\right]=\left[\begin{array}{ll}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right] C(\lambda)
$$

Note that $\operatorname{Re} u$ and $\operatorname{Im} u$, may not be unit length (which is easy to fix), but more importantly, they may not be orthogonal. We can apply Gram-Schmidt. Let R be an upper triangular matrix such that

$$
\left[\begin{array}{ll}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right] R=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]
$$

is an orthogonal pair of unit length vectors. Then

$$
\begin{aligned}
A\left[\begin{array}{cc}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right] R & =\left[\begin{array}{ll}
\operatorname{Re} u & \operatorname{Im} u
\end{array}\right] R R^{-1} C(\lambda) R \\
A\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] & =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] R^{-1} C(\lambda) R
\end{aligned}
$$

Now extend u_{1}, u_{2} to an orthonormal basis, $u_{1}, u_{2}, v_{3}, \ldots, v_{n}$. We then have

$$
A\left[\begin{array}{lllll}
u_{1} & u_{2} & v_{3} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{lllll}
u_{1} & u_{2} & v_{3} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cc}
R^{-1} C(\lambda) R & X \\
0 & B
\end{array}\right]
$$

where B is $(n-2) \times(n-2), X$ is $2 \times(n-2)$ and the 0 stands for an $(n-2) \times 2$ matrix of 0 s .

Applying the induction hypothesis to B gives the result.

