NUMBER THEORY

Math 522
Michael E. O'Sullivan
Preparing for the Final Exam

I. Cumulative Material

- Prove simple properties of the Fibonacci numbers.
- Convert from one base to another.
- Compute in a given base (addition, multiplication in bases 2, 3).
- Compute the gcd of two integers using the Euclidean algorithm. Write the gcd as a linear combination of the two integers.
- Solve a linear diophantine equation.
- Use divisiblity rules.
- The unique factorization theorem is one of the most fundamental results in number theory. Be able to use it in a variety of contexts.
- Solve a linear congruence in one variable.
- Solve a system of linear congruences modulo n in two variables.
- Solve a system of congruences in one variable with different moduli using the algorithm from the Chinese remainder theorem.
- The Chinese remainder theorem is another of the fundamental results in number theory. Be able to use it in a variety of contexts.
II. New Material (see problems from Chapter 6, 7, 9, 10 on the web page).
- Use Fermat's little theorem and Euler's theorem.
- Know that the Euler phi function, the number of divisors function, and the sum of divisors function are multiplicative, and be able to use this property.
- Understand the RSA cryptosystem.
- Find the gcd of two polynomials modulo a prime p using the Euclidean algorithm. Write the gcd as a sum of multiples of the two polynomials.
- Be able to compute the order of an integer a modulo m for $(a, m)=1$.
- Modulo a prime, understand and be able to use primitive roots and discrete logs.
- Be able to compute in the Gaussian integers. Know the properties of the norm. Suppose $n \in \mathbb{Z}$ is only divisible by primes in $\{2,3,5,7,11,13\}$. Know how to factor n in $\mathbb{Z}[i]$.

No calculators can be used on the final exam.

